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Proposition: U, V bounded open sets in diffeomorphism, Lebesgueℝ𝑁,  𝑇:  𝑈 → 𝑉 𝐸 ⊂ 𝑈 

measurable, then is Lebesgue measurable in V.𝑇(𝐸)

So, this is now, converse is obviously true U apply it to T inverse, so, if something is

Lebesgue measurable in V then its inverse image will be Lebesgue measurable in U. So, we

did it for Borel sets we knew. So, now, we are proving Lebesgue measurable sets.
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Now, E Lebesgue measurable in R N, so, what do you mean by this. Then there exists A ,𝐹
σ

B , so, set and And therefore, you can write𝐺
δ

𝐴 ⊂ 𝐸 ⊂ 𝐵 𝑚
𝑁

(𝐵\𝐸) = 0,  𝑚
𝑁

(𝐸\𝐴) = 0.

and this A is of course a Borel set and E minus A is contained in B minus A𝐸 = 𝐴 ∪ (𝐸\𝐴) 

which is Borel and mN of B minus A is equal to 0.

Now, conversely, if you have where A Borel and , H Borel and𝐸 = 𝐴 ∪ 𝐺, 𝐺 ⊂ 𝐻

0. Then A is of course, Borel, so Lebesgue measure Borel implies Lebesgue𝑚
𝑁

(𝐻) =

measurable. And G is a subset of a set of measures 0 and therefore, this is Lebesgue

measurable by completeness. Therefore, E is Lebesgue measurable.
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So, another characterization of Lebesgue measurable sets. So, E Lebesgue measurable if and

only if , F Borel, , A Borel, . So, it is just a Borel set plus a𝐸 = 𝐹 ∪ 𝑁 𝑁 ⊂ 𝐴 𝑚
𝑁

(𝐴) = 0

subset of a set of measure 0, then these are all Lebesgue measurable sets. So now, so you

write E in this fashion, then . Now, is Borel and we have already𝑇(𝐸) = 𝑇(𝐹) ∪ 𝑇(𝑁) 𝑇(𝐴)

seen that , that corollary we have already proved because A has measures 0𝑚
𝑁

(𝑇(𝐴)) = 0

and . So, T(F) is Borel. So, this union of a Borel set and a subset of𝑇(𝑁) ⊂ 𝑇(𝐴) 𝑇(𝐸)

measure 0, so this implies measurable Lebesgue measure.𝑇(𝐸)
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So, finally, we have this following theorem.

Theorem: (change of variable) U, V bounded open sets in diffeomorphism,ℝ𝑁,  𝑇:  𝑈 → 𝑉

integrable. Then𝑓: 𝑉 → ℝ 

𝑉
∫ 𝑓𝑑𝑚

𝑁
=

𝑈
∫(𝑓 ◦ 𝑇)|𝐽

𝑇
| 𝑑𝑚

𝑁
.
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Proof. So, Lebesgue measurable, but we write as above, so, F is Borel𝐸 ⊂ 𝑈 𝐸 = 𝐹 ∪ 𝑀

and this N is a subset of a Borel set of measure 0 as above. And without loss of generality

you can assume F intersection N is empty. So,

𝑚
𝑁

(𝑇(𝐸)) = 𝑚
𝑁

(𝑇(𝐹)) =
𝐹
∫ |𝐽

𝑇
| 𝑑𝑚

𝑁
=

𝐹∪𝑀
∫ |𝐽

𝑇
| 𝑑𝑚

𝑁
=

𝐸
∫ |𝐽

𝑇
| 𝑑𝑚

𝑁
.

(Refer Slide Time: 8:12)

So, dagger holds for, so . So, holds for all chi G equals to f, G Lebesgue measure,𝐺 = 𝑇(𝐸)

implies holds for non-negative simple functions, implies holds for non-negative Lebesgue

measurable functions, non negative integrable functions. And then f integrable you write



and dagger holds for f plus minus, implies holds for f. So, that gives you the𝑓 = 𝑓+ − 𝑓−

change of variable formula for this.
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Examples: So, the first example is something which we do in college, so . So,𝑓: [− 1, 1] → ℝ

we change the variable y=-x, then the interval remains the same. Now how would you do in

college? So, college method. So, you write dy equals minus dx and therefore, you write

−1

1

∫ 𝑓(𝑥)𝑑𝑥 =−
+1

−1

∫ 𝑓(− 𝑦)𝑑𝑦 =
−1

1

∫ 𝑓(− 𝑦)𝑑𝑦.

But the correct interpretation is: So, 𝑇(𝑥) =− 𝑥 = 𝑦,  |𝐽
𝑇
| = 1,  𝑇([− 1, 1]) = [− 1, 1].

And therefore,
[−1,1]

∫ 𝑓(𝑥)𝑑𝑚
1
(𝑥) =

[−1,1]
∫ 𝑓(− 𝑦)𝑑𝑚

1
(𝑦).

So, this is how we write it, and so, this is the correct way of interpreting this thing. So, the

Jacobian is plus 1 and so, this thing is that all ad hoc rules when you change the limits of the

integral to be the minus sign and so on.



(Refer Slide Time: 12:21)

Example: these are about the polar coordinates. So, open disc, center 0, radius say a𝐷 ⊂ ℝ2 

positive. So, Now, you take𝐷 = {(𝑥, 𝑦) ∈ ℝ2:  |𝑥|2 + |𝑦|2 < 𝑎}.

. So, you are taking the disc here and you are removing this𝑉 = 𝐷\{(𝑥, 0): 0 ≤ 𝑥 < 𝑎}

radius here and that is the meaning set V, . Then T from U to V,𝑈 = (0, 𝑎) × (0, 2π) ⊂ ℝ2

so, So, this diffeomorphism between the 2 sets𝑇(𝑟, θ) = (𝑥, 𝑦),   𝑥 = 𝑟 cos θ,  𝑦 = 𝑟 sin θ.  

and then you have JT is the determinant of cos theta and then sine theta when minus r sine

theta and r cos theta and that gives you r.

So, if f from V to R integrable, then you have



𝑉
∫ 𝑓𝑑𝑚

2
=

𝑈
∫ 𝑟𝑓(𝑟 cos θ, 𝑟 sin θ)𝑑𝑚

2
(𝑟, θ).

Now, D and V differ by a set of measure 0 and therefore,

𝐷
∫ 𝑓𝑑𝑚

2
=

𝑈
∫ 𝑟𝑓(𝑟 cos θ, 𝑟 sin θ)𝑑𝑚

2
(𝑟, θ).

So, now, if f from R 2 to R, so, non-negative function then monotone convergence theorem

implies,
ℝ
∫ 𝑓𝑑𝑚

2
=

(0,∞)×(0,2π)
∫ 𝑟𝑓(𝑟 cos θ, 𝑟 sin θ)𝑑𝑚

2
(𝑟, θ).

So, in particular and continuous then you have𝑓 ≥ 0 

ℝ
∫ 𝑓𝑑𝑚

2
=

0

∞

∫
0

2π

∫ 𝑓(𝑟 cos θ, 𝑟 sin θ) 𝑟𝑑𝑟 𝑑θ.

This is the familiar change of variable formula which you know and that comes precisely

because the Jacobean has set it. And then if you have an integrable function you apply f plus

and f minus and U too.

So, this is about how the change varies. Similarly, you can try your hand at writing down the

expression for the you will see that you will get a new right to polar coordinates in 3

dimensions cylindrical or spherical, you will get precisely whatever you have been doing in

your calculus courses, because the Jacobian will be exactly what you have there. So, that is

why there is no mystery as to why you get these numbers Why do you write that, there𝑟𝑑𝑟 𝑑θ

is no mystery, because of the Jacobean. So, with this, I conclude this course. I hope you

enjoyed it and I hope it was a good learning experience for you. Thank you very much.


