Measure and Integration
Professor S. Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Lecture No-78
12.4 — Change of variable
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The last topic I want to discuss is the change of variables. For lack of time, I cannot give you

all the details, but I hope I will give you a sufficient amount and give you references for how

to do it. So, let us take for example.

(1) Take g(x) = f(x + t), where tis a fixed term. Then you will know that



1] gdm1 = fdml.

[a,b] [a+t,b+t]
Now, this is the same as saying that f feTdm, = f fdm_.
1 1
[a,b] T([a,b])

The other example, which we have already seen is when A is a nonsingular matrix or
nonsingular linear transformation. So, A defines a linear transformation R N to R N, and then

you saw that mN(A(E)) = | det(A)|mN(E).

So, now, X ° A(x) = XE(A(x)) = XA‘l(E)' And therefore,

[ X - Adm, = m (A"(E)) = |det(A)| " m, (E) = | det(4)]”" [ xgdm,
R R

= [ X, dm = | det(4)| [ X, ° Adm, .

And using this of course, you can now proceed by for simple functions and then non negative
functions and integrable functions and so on and we can rewrite the write the formula so, our
aim in this section is to in this chapter is to generalize this to arbitrary transformations of

course, not all arbitrary transformations are possible. So, we will see what.
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So, the previous one as I said, So, integral R N of f d mN will be equal to a mod determinant

of A times integral over R N f composed with A d mN. So, this was how.

So, we want to generalize this to arbitrary. So, let us take T R" > R" mapping. So,

T(x) = (Tl(x),...., TN(x)) . So, if T is differentiable that is each Ti is differentiable when we

aT. (%) aT (%)
1 — 1 N
say T'(x) = —5—, s —;,
1 1

aT () oT, (%)

6xN e axN

And then we say JT aTx this is called the determinant of T prime x, and this is called the
Jacobian of T and x. So, T is diffeomorphism if T is a bijection and both T and E inverse are
continuously differentiable. So, if Ti is C1 that means continuously differentiable, that is the

derivative is continuous then we say that function is continuously differentiable.
(Refer Slide Time: 6:18)
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Proposition: So, U, V bounded open sets of RN, T:U - V ahomeomorphism which is also a

C”1 map that means, E < U Borel set, then

m (T(E)) < { U ldm .

So, if you see in the case of linear transformation mod derivative of a linear transformation is

the same matrix itself and you will have mod determinant of A which is the matrix which will



come out and you get integrally and M and E, integrals over E d mN is nothing but A mN of
E. So, this is exactly the generalization only you have now less than or equal to sign because

of this.

So, this is the proposition from which we will start. The proof of this is somewhat TDS, very

technical and very delicate also and long and therefore, we have been omitted.
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So, for proof see my book Kesavan: Measure and integration Trim 77, so you can see a full

proof of this inequality there.

Corollary: So, U and V bounded open sets in ]RN, T: U — V homeomorphism and C*1 map.
E contained in U Borel set, mN(E) = 0 = T(E) Borel and mN(T(E)) = 0.

proof: Use (*).

So, that is the corollary which you have here.
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Proposition: U, V will be bounded open sets of RN, T:U - V is a homeomorphism and C*1

map, f:V — R non-negative Borel measurable function then

[ fam, < [(f = )| ldm,
v U

So, if composed with T aTx you know is f of T of x. So, this is the so, we call this double

star.

proof: F contained in E Borel set, then F will be equal to TE, E Borel E contained in Y. Then
chi E we have just seen is nothing but chi f composed with T, because chi f of Tx that means
Tx belongs to F that means x belongs E, so that means chi E is equal to chi f composed with

T.

And then set f equal to chi E, then double star is the same as star applied to f, we have f of E
mN of E is less than or equal to mN of T is the integral TE JT of mN. So, this is exactly the
relationship which we have here. So, f is equal to chi of E and therefore, this is and then f
composed with T, but not satisfied this is applied to chi of F. So, applied to chi of F, so, then
you have mN of F which is mN of T of E is less than equal or equal to f composed T which is

chi of E.

So, integral over E and then mod JT d mN. So, double star is the same as the star applied to
chi of F. So, now true for simple Borel measurable functions then the monotone convergence
theorem is true for non-negative Borel measurable functions, this is just linearity of the

integral and therefore this is true.
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Proposition: U, V bounded open sets in ]RN, T:U - V diffeomorphism,f = 0 Borel

measurable function. Then
[ fdm, = J(f © Tyl dm,
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proof: We already know that
{fdmN < I{(f °T) |/ | dm,.

Now apply this to T~V - U and the function (f-T)| ]T|. So, what do you get? So, you

put y equals T of x, x is in U, y is in V. So, you have that

[ = DY@ U, dmy @) < [(F = T =T ONU, T O, -O)ldm, (»)
U %4
=17 U, DI, ) ldm, (v) = [ £G) dm, ).

= [ fdm, = (f < Ty dm, , since (T GO = 1

So, that proves the result.
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Corollary: You have U, V bounded open sets of RN, T: U - V diffeomorphism, E c U

Borel, then you have mN(T(E)) = |]T| dmN.
E

(so apply the above result to x p (T))

So, we have already done that, you have this corollary (())(21:15).



