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We will now discuss an important topic in Lp spaces namely that of duality. So, the Lp spaces

are all Banach spaces. Therefore, whenever you have a Banach space, it is interesting to

know what is the dual space, the dual space is the space of all continuous linear functionals

on the Banach space, that itself forms on the Banach space. So, we would like to often

compute what is that dual space, and the study of the dual space often gives us a lot of

information about the original space itself. And therefore, it is important to know what is the

dual space, and that is what we are going to do now for the Lp spaces.

So, we have , measure space, and you have . And then, is the(𝑋, 𝑆, µ) 1 ≤ 𝑝 ≤ ∞ 𝑝'

conjugate exponent, that means if p=1, then , and vice versa, and𝑝' = ∞ 1
𝑝 + 1

𝑝' = 1.

So, let us take , then we define𝑔 ∈ 𝐿𝑝'(µ) 𝑎𝑛𝑑 𝑓 ∈ 𝐿𝑝(µ)

𝑇
𝑔
(𝑓) =

𝑋
∫ 𝑓𝑔𝑑µ.

So Holder implies is a continuous linear functional on Lp mu,|𝑇
𝑔
(𝑓)| ≤ ||𝑓||

𝑝
||𝑔||

𝑝'
 ⇒ 𝑇

𝑔
 

and .   —----- (*)||𝑇
𝑔
|| ≤ ||𝑔||

𝑝'



So, our aim is to show for sigma finite spaces. So, for sigma finite spaces, and ,1 ≤ 𝑝 < ∞

we wish to show every continuous linear functional on Lp mu occurs in this way, and we

have equality in (*). Stars, so not only so in other words this g going to Tg, that is g going to

Tg is an isometric, isomorphism, its 1, 1 on 2 continuous map, and therefore it is

isomorphism by the open mapping theorem, and it is an isometric isomorphism, because the

norm is preserved so between Lp dash mu, and Lp mu dash which is the dual space of the.
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Proposition. -finite measurable measure space, ,(𝑋, 𝑆, µ) σ 1 ≤ 𝑝 < ∞

, such that , then almost everywhere. So, in other𝑔
𝑖
,  𝑖 = 1, 2,  𝑖𝑛 𝐿𝑝'(µ) 𝑇

𝑔
1

= 𝑇
𝑔

2

𝑔
1

= 𝑔
2

words, the map is injecting.𝐺: → 𝑇
𝑔

proof: , then So, E contained in X set a finite measure,𝑓 ∈ 𝐿𝑝(µ)
𝑋
∫ 𝑓(𝑔

1
− 𝑔

2
)𝑑µ = 0.

because its finite measure then , therefore Now, if E is Sχ
𝐸

∈ 𝐿𝑝(µ)
𝐸
∫(𝑔

1
− 𝑔

2
)𝑑µ = 0.

because of sigma finiteness, finite for all i. Then, this implies the𝐸 = ∪
𝑖=1

∞𝐸
𝑖
,  µ(𝐸

𝑖
) 

𝐸
∫ 𝑓(𝑔

1
− 𝑔

2
)𝑑µ = 0 ⇒ 𝑔

1
= 𝑔

2
 𝑎. 𝑒.
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So, this proves the uniqueness, so now you have that g going to Tg, from Lp dash mu to Lp

mu dash, the dual space is injective and continuous, to show it is subjective and isometric. So,

we will first move it to the finite measure space, then we will look at it in a general case,

sigma finite. Before that, anyway we need a very interesting lemma. This is a nice lemma.

Lemma: measure space measurable, assume for every , you(𝑋, 𝑆, µ) 𝑔: 𝑋 → ℝ µ(𝐸) > 0

have that Then| 1
µ(𝐸)

𝐸
∫ 𝑓𝑔𝑑µ| ≤ 𝑘. |𝑔| ≤ 𝑘 𝑎. 𝑒.

proof: open set.Let Define𝑈 = {𝑡 ∈ ℝ:  |𝑡| > 𝑘} (𝑎 − 𝑟, 𝑎 + 𝑟) ⊂ 𝑈.

𝐸 = {𝑥 ∈ 𝑋:  𝑔(𝑥) ∈ (𝑎 − 𝑟, 𝑎 + 𝑟)}.

Now, if is positive, then you haveµ(𝐸) 𝐴
𝐸

(𝑔) = 1
µ(𝐸)

𝐸
∫ 𝑔𝑑µ.
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Then, mod Ae of g minus a, equals 1 by mu E of integral over E, g minus a d mu, a is a

constant so if I integrate over E, I will just get mu of E times a, divided by mu of E is give

you a, again, so this I can write like this. But g minus a, because we are in E, g minus a is less

than or equal to r, so this is less equal to 1 by mu E, integral over E, mod g minus a, d mu, but

this is less than or equal to less than r, and therefore, you have then this is equal to sorry less

than or equal let us strictly less than r.

So, this means that AE of g also belongs to a minus r, a plus r. And, that is less than contained

in U. And this implies that mod of AE of g is greater than equal to k, which is a contradiction.

Because you have told that for every set of positive measure. The A average is less than or

equal to k. So, this implies that mu E equal to 0.

Now, set of all x in X, so say gx is greater than k can be covered by a countable number of

sets of the form E, since U is the countable union of intervals. So, each set of this form is of

measure 0, and therefore this implies that mod g greater than k, the measure of this equal to 0,

that is g mod g is less than equal to k, almost everywhere. So, that proves this.
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Theorem: Let be a finite measure space, Then there(𝑋, 𝑆, µ) 1 ≤ 𝑝 < ∞,  𝑇 ∈ (𝐿𝑝(µ))'.

exists a unique , such that , and .𝑔 ∈ 𝐿𝑝'(µ) 𝑇 = 𝑇
𝑔

||𝑇|| = ||𝑔||
𝑝'

proof: step 1: now, is finite measure, therefore chi of E belongs to Lp of mu for all E and S,µ

and therefore define lambda of E, equals t of chi f. Then of course the lambda of the empty

set is chi_f for the empty set is the identically 0 function, so t of 0 is equal to 0. Now, if A and

B are disjoint, when chi of A union B is chi of A, plus chi of B. So, this implies that lambda

is finitely additive, since p is linear. Now, let E be the union Ei, Eies, Ei is disjoint, then we

do the usual thing f k equals union i equals 1 to k of E, Ei, then fk increases to b.
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Then, mu of E minus fk is equal to, since you are in the finite measure space, you are allowed

to subtract, let me write this, so mu E equals sigma, i equals 1 to infinity mu of Ei and that is

finite, and mu of E minus fk is mu E minus mu of fk, and that is equal to sigma i equals k

plus 1 to infinity, mu of Ei. And, this tends to 0, as k tends to infinity, because you have this

the tail of a convergent series, and therefore this has to go to 0.

Then, therefore this implies that norm of chi E minus chi of fk in Lp, this is nothing but mu of

E minus fk because that is where it is, (())(18:34) everywhere, else it is 0, and power 1 by 3,

and therefore this goes to 0. So, chi E converge, chi is chi of fk converges to chi of E in Lp

mu, therefore t of chi of E, chi of fk converges to t of chi of U, which is equal to lambda E,

but this is a finite disjoint in the n, so this equal to i equals 1, 2, k lambda of chi of Ei lambda

of Ei, and therefore you have lambda is countably additive, implies lambda is a signed

measure.

Now, if mu E equal to 0, this implies that chi E equal to 0, almost everywhere, that is chi E

equal to 0 in Lp mu, and therefore this implies lambda of E which is t of mu E, and t of chi E

equal to 0. This implies that lambda is absolutely continuous with respect to mu, because no,

so by the Radon–Nikodym theorem, there is a g, which is greater than equal to 0, such that

lambda E equal to integral gd mu over E for all E in s.
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So, by linearity of T, if is any simple function, we haveϕ 

𝑇(ϕ) =
𝑋
∫ ϕ𝑔𝑑µ.

step 2: f in l infinity mu, f non negative, then of course f is in Lp mu for all 1 less than equal

to p, less than infinity, this is because mu is finite.

So, phi n, n equals 1 t infinity, simple functions, phi n non negative, phi n increasing to f.

Then, we also saw phi n converges to f in Lp mu, we have already seen this earlier, phi n

converges to f in Lp mu to a simple application of the dominated convergence theorem.

Therefore, T of phi n converges to T of f.
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On the other hand, pointwise . Therefore by dominatedϕ
𝑛
𝑔 → 𝑓𝑔 |ϕ

𝑛
𝑔| ≤ 𝑓|𝑔| 

convergence theorem, we have And therefore, and this is nothing but t
𝑋
∫ ϕ

𝑛

𝑔𝑑µ →
𝑋
∫ ϕ𝑔𝑑µ.  

of phi n, which converges to t of f, therefore you have

𝑇(𝑓) =
𝑋
∫ ϕ𝑔𝑑µ,  ∀ 𝑓 ∈ 𝐿∞(µ),  𝑓 ≥ 0.

t of f equal to integral over x, phi g, d mu, for every f in l infinity.
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So, if So, now to prove, the𝑓 ∈ 𝐿∞(µ),  𝑓 = 𝑓+ − 𝑓− ⇒ 𝑇(𝑓) =
𝑋
∫ 𝑓𝑔𝑑µ  ∀ 𝑓 ∈ 𝐿∞(µ).

same is true for every , and𝑓 ∈ 𝐿𝑝(µ) ||𝑇|| = ||𝑇
𝑔
|| = ||𝑔||

𝑝'
.

So, this is what we need to prove, which we will do next time.


