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Lecture No-70
11.2 - Applications
So, we proved an important theorem namely that if one is less than p less than infinity and
omega is an open set in RN with Lebesgue measure then continuous functions with compact
support in Omega dense in 1 P of omega and as a consequence, we proved that 1 P of omega is
separable if P is less than infinity and it is not separable if p is equal to infinity. Now, in the
last thing when I mentioned it, the countable dense set is pm and tilde union over m and n,

not just pm and I say wrongly what I have corrected it in the lecture materials. So, now, we

will see some more applications of this particular result.
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So, now, we are going to prove a fairly important theorem.

. N .
Theorem: (Lusin’s theorem). So, E € R a measurable set of finite measure, f: E - R

measurable function, epsilon greater than 0, then there exists ¢ € C C(RN) such that
m, ({x € E: (x) # f(x)}) < eandiffisbounded, ||p|| < [If]]_.

proof. Step 1: so, n in N positive integer, so, we define E = {x € E: |f(x)] £ n}. Then E

1s measurable and En T E, That is clear.



Now, E has finite measure so, mN(En) T mN(E) implies there exists an m such that

m (E \E) <= Define f:R" > R by

f@) = fo) ifx €E_
=0 if x€ R\E .

Now, f is bounded because it is less than equal to m because otherwise it is 0 so, it is

bounded and E_ has finite measure since it where the f is not 0. So, this implies f tilde is

integrable. That is f € LI(RN). So, then that exists phi N in Cc of RN such that

. 1, N . L
cl)n - finL (R), and there exists a subsequence cl)n , cl)n — f pointwise almost
k k

everywhere all these things we know.
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Step 2: E m has finite measure and d)n — f point wise implies there exists F C Em,
k

mN(Em\F ) < % and {(I)n } converges uniformly on F. So, this theorem we have said if you
k

have pointwise convergence on a set of finite measure, then you can find a subset where the
convergence is uniform, that is it is almost uniformly convergent. So, then by Egoroff’s of
this theorem you can do it, now f also has finite measure then there exists a K compact ,K

contained in F mN(E\K) < e



Step 3. So, K C F, cl)n ->f, =>f |1( is continuous but, K E . And on Em f tilde is the
k

same as f and that is, so f'tilde E equals F on Em implies that f restricted to k is continuous.

. . ) N .
Step 4. So, by Tietze extension theorem, there exists a g: R — R continuous such that

g = fonKand|lgll = IIfll = m

Step 5. so, using Tietze extension theorem, we can also use Urysohn’s lemma now, there
exists ¢ € CC([R{N), 0<d<1 ¢=10onk. Then set
b=gy=>p=gonK=>¢ = fonk.
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And therefore, ||$]| < [lgll = m, m (¢ # f) <m (E\K) < €.
So, this is Lusin's theorem.
Proposition. So, 1 < p, o, f € L'(R").Forh € R", define

T ) = fx — h), x €R".

Then lim ||‘thf — fll. = 0.
h—0 P
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. . N
proof: so, by translation invariance of Lebesgue measure, Thf € Lp(]R ) ||rhf ||p = ||f ||p.

Now, let € > 0. So, choose ¢ € CC(RN), such that ||f — <|)||p < %
— — £
> s -7 1L = IIf = oIl <+

So, ¢ has compact support implies ¢ is uniformly continuous. Now, let

supp(P) c [— q, a]M and some boxes, big boxes you can put there. Then there exists a
delta greater than 0 we can choose 0 to be less than delta less than 1 because the smaller you

go the answer the uniform continuity (())(15:10) such that |h| < 6,

_N

> 0@ — h) — ()| <+ [2(a + D] ', VX ER".

(Refer Slide Time: 15:50)



Ton Wl & o

P — P p
§ Gl dw, = J \ Qo i) Ay < \g;‘)
” Lanpend”

=5 “Th‘f“&“,: < q3‘

M-qphs S V-l nasTgl,x WD TR <E.

_—
_

Then |h| < § =

[ 1, (@) = ol'dm, = [loGc = b) = ¢E)l'dm, < ()" = IIt,¢ — ¢l <
R

Andnow, |If =T fIl < IIf = @Il + 1o = 7,0l + IIt,d —T,fll < e
That proves the theorem.

So, with this so, the next we will take up the equation of duality, we have a norm linear space,
we have Banach spaces, we would like to know what is the dual of this Banach space | P of

omega so, we will take that up next.



