Measure and Integration Professor S. Kesavan Department of Mathematics The Institute of Mathematical Sciences Lecture No-70 11.2 - Applications

So, we proved an important theorem namely that if one is less than p less than infinity and omega is an open set in RN with Lebesgue measure then continuous functions with compact support in Omega dense in l P of omega and as a consequence, we proved that l P of omega is separable if P is less than infinity and it is not separable if p is equal to infinity. Now, in the last thing when I mentioned it, the countable dense set is pm and tilde union over m and n, not just pm and I say wrongly what I have corrected it in the lecture materials. So, now, we will see some more applications of this particular result.

(Refer Slide Time: 01:10)

So, now, we are going to prove a fairly important theorem.

Theorem: (Lusin's theorem). So, $E \subset \mathbb{R}^N$ a measurable set of finite measure, $f: E \to \mathbb{R}$ measurable function, epsilon greater than 0, then there exists $\phi \in C_c(\mathbb{R}^N)$ such that

 $m_{N}(\{x \in E: \Phi(x) \neq f(x)\}) < \epsilon$ and if f is bounded, $||\Phi||_{\infty} \leq ||f||_{\infty}$.

proof. **Step 1:** so, n in N positive integer, so, we define $E_n = \{x \in E : |f(x)| \le n\}$. Then E_n is measurable and $E_n \uparrow E$, That is clear.

Now, E has finite measure so, $m_N(E_n) \uparrow m_N(E)$ implies there exists an m such that $m_N(E_n \backslash E) < \frac{\epsilon}{3}$. Define $\widetilde{f}: \mathbb{R}^N \to \mathbb{R}$ by $rac{\epsilon}{3}$. Define f: \tilde{z} $\colon \mathbb{R}^N \to \mathbb{R}$

$$
\widetilde{f}(x) = f(x) \text{ if } x \in E_m
$$

$$
= 0 \text{ if } x \in \mathbb{R}^N \backslash E_m.
$$

Now, f is bounded because it is less than equal to m because otherwise it is 0 so, it is \tilde{z} bounded and E_m has finite measure since it where the f is not 0. So, this implies f tilde is \tilde{z} integrable. That is $f \in L^1(\mathbb{R}^N)$. So, then that exists phi N in Cc of RN such that \tilde{z} $\in L^1(\mathbb{R}^N)$. $\phi_n \to f$ in $L^1(\mathbb{R}^N)$, and there exists a subsequence $\phi_{n_k}, \phi_{n_k} \to f$ pointwise almost \rightarrow f everywhere all these things we know.

(Refer Slide Time: 5:37)

Step 2.	Em No. 66. max. $\varphi_{n-3}f_{1}$ + $\varphi_{1}x_{2} \Rightarrow 3 \exists F \subset E_{m}$ $\varphi_{1}(E_{m} \setminus F) < \frac{1}{3}$	
\n $\frac{1}{2}\varphi_{n}f_{1}$ $\frac{1}{2}\varphi_{2}$ $\frac{1}{2}\varphi_{2}$ $\frac{1}{2}\varphi_{2}$ $\frac{1}{2}\varphi_{2}$ \n	\n $\frac{1}{2}\varphi_{2}$ $\frac{1}{2}\varphi_{2}$ $\frac{1}{2}\varphi_{2}$ $\frac{1}{2}\varphi_{2}$ \n	\n $\frac{1}{2}\varphi_{2}$ $\frac{$

Step 2: E m has finite measure and $\phi_{n_k} \to f$ point wise implies there exists \rightarrow f \tilde{z} $F \subset E_{m'}$ $m_{N}(E_{m} \backslash F) < \frac{\epsilon}{3}$ and $\{\phi_{n}\}\)$ converges uniformly on F. So, this theorem we have said if you $\frac{1}{3}$ and $\{\Phi_{n_k}$ } have pointwise convergence on a set of finite measure, then you can find a subset where the convergence is uniform, that is it is almost uniformly convergent. So, then by Egoroff's of this theorem you can do it, now f also has finite measure then there exists a K compact ,K contained in F $m_N(E\backslash K) < \epsilon$.

Step 3. So, $K \subset F$, $\phi_{n_k} \to f$, $\Rightarrow f \big|_K$ is continuous but, $K \subset E_m$. And on Em f tilde is the \rightarrow f, \tilde{z} , \Rightarrow f $\tilde{\tilde{}}$. $|K|_K$ is continuous but, $K \subset E_m$. same as f and that is, so f tilde E equals F on Em implies that f restricted to k is continuous.

Step 4. So, by Tietze extension theorem, there exists a $g: \mathbb{R}^N \to \mathbb{R}$ continuous such that $g = f$ on K and $||g||_{\infty} \leq ||f||_{\infty} \leq m$.

Step 5. so, using Tietze extension theorem, we can also use Urysohn's lemma now, there exists $\phi \in C_c(\mathbb{R}^N)$, $0 \le \phi \le 1$, $\phi \equiv 1 \text{ on } K$. Then set $\phi = g\psi \Rightarrow \phi = g \text{ on } K \Rightarrow \phi = f \text{ on } K.$

(Refer Slide Time: 10:52)

And therefore, $||\phi||_{\infty} \leq ||g||_{\infty} \leq m$, $m_N(\phi \neq f) \leq m_N(E\backslash K) < \epsilon$.

So, this is Lusin's theorem.

Proposition. So, $1 \leq p, \infty$, $f \in L^p(\mathbb{R}^N)$. For $h \in \mathbb{R}^N$, define

$$
(\tau_n f)(x) = f(x - h), x \in \mathbb{R}^N.
$$

Then $h \rightarrow 0$ lim \rightarrow ($||\tau_{n} f - f||_{p} = 0.$

(Refer Slide Time: 13:16)

 $(\tau_{\ell} f)(x) = f(x-\lambda) \times G^{\lambda}.$ The line $\|\overline{v}_k\|^2 - \frac{1}{2}\|_{p} = 0$. PR By translation int of Lab meso, LRELPOR"), ITERILAIPILA $E>0$. Chose $q \in C_{c}(\Omega^{\omega})$ $\mathbb{I} \varphi - q \mathbb{I}_{p} < 2\varphi$ $243 = 44.47 + 2.67 + 2.71$ of then oft must => of winf cont. Let sup QC Easal". $| \varphi(z - k) - \varphi(z) | < \frac{3}{5} [2 \omega k]$ $\forall z \in R^3$

proof: so, by translation invariance of Lebesgue measure, $\tau_h^f \in L^p(\mathbb{R}^N)$, $||\tau_h^f||_p = ||f||_p$. Now, let $\epsilon > 0$. So, choose $\phi \in C_c(\mathbb{R}^N)$, such that $||f - \phi||_p < \frac{\epsilon}{3}$ $\frac{e}{3}$.

$$
\Rightarrow ||\tau_h f - \tau_h \phi||_p = ||f - \phi||_p < \frac{\epsilon}{3}.
$$

So, φ has compact support implies φ is uniformly continuous. Now, let $supp(\phi) \subset [-a, a]^M$ and some boxes, big boxes you can put there. Then there exists a delta greater than 0 we can choose 0 to be less than delta less than 1 because the smaller you go the answer the uniform continuity (())(15:10) such that $|h| < \delta$,

$$
\Rightarrow |\Phi(x-h) - \Phi(x)| < \frac{\epsilon}{3} \left[2(a+1) \right]^{-\frac{N}{p}}, \forall \, x \in \mathbb{R}^N.
$$

(Refer Slide Time: 15:50)

Then $|h| < \delta \Rightarrow$

$$
\int_{\mathbb{R}^N} |\tau_h(\phi) - \phi|^p dm_N = \int |\phi(x - h) - \phi(x)|^p dm_N < \left(\frac{\epsilon}{3}\right)^p \Rightarrow ||\tau_h \phi - \phi||_p < \frac{\epsilon}{3}.
$$

And now, $||f - \tau_h f||_p \le ||f - \phi||_p + ||\phi - \tau_h \phi||_p + ||\tau_h \phi - \tau_h f||_p < \epsilon.$

That proves the theorem.

So, with this so, the next we will take up the equation of duality, we have a norm linear space, we have Banach spaces, we would like to know what is the dual of this Banach space l P of omega so, we will take that up next.