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So, measure space. So, are the spaces, with the norm norm p.(𝑋, 𝑆,  µ) 𝐿𝑝(µ) 1 ≤ 𝑝 ≤ ∞ 

So, we say in if as n tends to infinity. So, Cauchy if for every𝑓
𝑛

→ 𝑓 𝐿𝑝(µ) ||𝑓
𝑛

− 𝑓||
𝑝

→ 0 

epsilon positive there exists a capital N such that for all we have𝑛, 𝑚 ≥ 𝑛 ||𝑓
𝑛

− 𝑓
𝑚

|| < ϵ.

So, we want to show that these spaces are complete, namely this symmetric space empty

Cauchy sequence converges to its metric, then it is a complete space and a complete norm

linear space is called a Banach space. So, we want to show you all these L p spaces are

Banach spaces.

So, before that let us start with the following lemma.

Lemma. So, . So, Cauchy in implies the sequence is Cauchy in1 ≤ 𝑝 < ∞ {𝑓
𝑛
} 𝐿𝑝(µ)

measure.

proof: so, let , then for all n, m positive integers, we defineϵ > 0



𝐴
𝑛,𝑚

(ϵ) = {𝑥 ∈ 𝑋:  |𝑓
𝑛
(𝑥) − 𝑓

𝑚
(𝑥)| ≥ ϵ}.

So, then
𝑋
∫ |𝑓

𝑛
− 𝑓

𝑚
|𝑝𝑑𝑥 ≥

𝐴
𝑛,𝑚

(ϵ)
∫ |𝑓

𝑛
− 𝑓

𝑚
|𝑝𝑑𝑥 ≥ ϵ𝑝µ(𝐴

𝑛,𝑚
(ϵ)).

So, this implies that µ(𝐴
𝑛,𝑚

(ϵ)) ≤
||𝑓

𝑛
−𝑓

𝑚
||𝑝

ϵ𝑝 .

So, fn Cauchy in implies of course, that mu so, there exists a N such that for all n, m𝐿𝑝(µ)

greater than equal to so, given and greater than equal to capital N we haveη > 0 

||𝑓
𝑛

− 𝑓
𝑚

|| < η.
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Therefore, for all , we have and therefore, you have is𝑛, 𝑚 ≥ 𝑁 µ(𝐴
𝑛,𝑚

(ϵ)) ≤ η𝑝

ϵ𝑝 {𝑓
𝑛
 } 

Cauchy in measure.

So, now, we have the following important theorem, sometimes called the Riesz Fischer

theorem also.

Theorem: So, let measure space, Then is a Banach space. So(𝑋, 𝑆,  µ) 1 ≤ 𝑝 ≤ ∞.  𝐿𝑝(µ)

that is all we need to show.



proof: Step 1: So, then Cauchy implies Cauchy in measure by the lemma1 ≤ 𝑝 < ∞. {𝑓
𝑛
 }

above and that implies there exists a subsequence , which is almost uniformly Cauchy.{𝑓
𝑛

𝑘

 }

We have seen this before given a sequence which is Cauchy in measure, then there is a sub

sequence which is almost uniformly Cauchy.

And, that implies that , almost everywhere. So, there implies, there exists f𝑓
𝑛

𝑘

→ 𝑓

measurable such that fn k converges to f pointwise almost everywhere. So, let epsilon be, we

now have a candidate for the limit, so, we have to show this so, to show f belongs to L p mu

and fn goes to f in L p mu.

So, if we can show these two things, our theorem is proved so, let epsilon be positive and let

N belong to the natural numbers such that norm fn minus fm p is less than epsilon for all n, m

greater than equal to capital N. So, keep n fixed of course, n is greater than N.
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So, by Fatou lemma, since fm converges fm converges to f almost everywhere and therefore,

you have
𝑋
∫ |𝑓

𝑛
− 𝑓|𝑝𝑑µ ≤

𝑛 ∞
lim
→

inf
𝑋
∫ |𝑓

𝑛
𝑘

− 𝑓|𝑝𝑑µ ≤ ϵ𝑝  (∀ 𝑛 ≥ 𝑁).

⇒ 𝑓
𝑛

→ 𝑓 ∈ 𝐿𝑝(µ) ⇒ 𝑓 ∈ 𝐿𝑝(µ).

Also, .𝑓
𝑛

→ 𝑓  𝑖𝑛 𝐿𝑝(µ)
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Step 2: . So, so, there exists for every k in N there exists𝑝 = ∞ 𝑓
𝑛
 𝐶𝑎𝑢𝑐ℎ𝑦  𝑖𝑛 𝐿𝑝(µ),

such that for all we have𝑁
𝑘
 ∈ ℕ 𝑚, 𝑛 ≥ 𝑁

𝑘
 , ||𝑓

𝑛
− 𝑓

𝑚
|| < 1

𝑘 .

i.e., there exists , and . So, let𝐸
𝑘

⊂ 𝑋,  µ(𝐸
𝑘
) = 0 𝑜𝑛 𝐸

𝑘
𝑐 |𝑓

𝑛
(𝑥) − 𝑓

𝑚
(𝑥)| < 1

𝑘

So, if , it is in every Ek compliment and𝐸 = ∪
𝑘=1

∞𝐸
𝑘
,  µ(𝐸) = 0,  𝐸𝑐 = ∩

𝑘=1
∞𝐸

𝑘
𝑐. 𝑥 ∈ 𝐸𝑐

therefore, is Cauchy. So, you take𝑓
𝑛
(𝑥) 𝑓(𝑥) =

𝑛 ∞
lim
→

𝑓
𝑛
(𝑥),  𝑓(𝑥) = 0 𝑜𝑛 𝐸.

And, you have that and .𝑓 ∈ 𝐿∞(µ) 𝑓
𝑛

→ 𝑓 𝑎. 𝑒.  𝑋



So, that proves that this is a Banach space. So, this completes the proof on both (())(11:58).
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Corollary: (X, S, mu) measure space, and in Then, there exists a1 ≤ 𝑝 ≤ ∞ 𝑓
𝑛

→ 𝑓 𝐿𝑝(µ).

subsequence such that a.e.{𝑓
𝑛

𝑘

} 𝑓
𝑛

𝑘

→ 𝑓

proof: almost everywhere if , we have already seen and there exists𝑓
𝑛

→ 𝑓 𝑝 = ∞ 𝑓
𝑛

𝑘

→ 𝑓

a.e. if We have seen this.1 ≤ 𝑝 ≤ ∞.

So, seen in the proof of the theorem above and therefore, this. Now, you can also explicitly

construct the subsequence in case of 1 less than equal to p less than infinity and then you can

find in almost any textbook on measure theory in particular I will say compare Rudin Real

and Complex Analysis or the book I am following Measure and Integration Trim77.

So, you can find it in either of the books and explicit construction now. There is an additional

advantage in this proof that in fact explicit construction of fn k also shows that the sub

sequence is bounded above by a fixed function. Anyway, that is not very important for the

moment and so, we will not give the proof we have used the convergence in measure

arguments which is an easier argument to do.
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Theorem: sequence in , almost everywhere. Then1 ≤ 𝑝 < ∞,  {𝑓
𝑛
} 𝐿𝑝(µ) 𝑓

𝑛
→ 𝑓 

if and only if .𝑓
𝑛

→ 𝑓 𝑖𝑛 𝐿𝑝(µ) ||𝑓
𝑛
||

𝑝
→ ||𝑓||

𝑝
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proof: so, is a continuous mapping and therefore, this implies that𝑓
𝑛

→ 𝑓 𝑖𝑛 𝐿𝑝(µ)

. So, that is obvious and therefore, you do not have to do anything here.||𝑓
𝑛
||

𝑝
→ ||𝑓||

𝑝

Conversely, almost everywhere and .𝑓
𝑛

→ 𝑓 ||𝑓
𝑛
||

𝑝
→ ||𝑓||

𝑝
𝑓

𝑛
, 𝑓 ∈ 𝐿𝑝(µ)



So, for that we take So, to show the integral fn dm over x goes to 0. So, that𝐹
𝑛

= |𝑓
𝑛

− 𝑓|𝑝.

is what we want to show. Now, is convex. Therefore,𝑡 → |𝑡|𝑝 

𝐹
𝑛

= |𝑓
𝑛

− 𝑓|𝑝 ≤ 2𝑝−1(|𝑓
𝑛
|𝑝 + |𝑓|𝑝) = 𝐺

𝑛
.

Then is integrable, and almost everywhere. Further by hypothesis we𝐺
𝑛

𝐹
𝑛

≤ 𝐺
𝑛
, 𝐹

𝑛
→ 𝐺

𝑛

have
𝑋
∫ 𝐺

𝑛
𝑑µ →

𝑋
∫ 𝐺𝑑µ <+ ∞.

integral Fn, sorry integral Gn d mu over x goes to the integral over G sorry x G d mu, this is

wrong Gn goes to G almost everywhere and where G is equal to 2 power p mod f p and this is

also finite because what is this integral this is 2 power p norm f p power p.

So, this, so, by generalized dominated convergence theorem we have seen this, this implies

that
𝑋
∫ 𝐹

𝑛
𝑑µ → 0,  𝑖. 𝑒.,  𝑓

𝑛
→ 𝑓 𝑖𝑛 𝐿𝑝(µ).

So, that completes. So, we have shown that it is a Banach space we have seen about

convergence. So, next time we will take up some other special properties of L p spaces like

density and then separability and such topological properties.


