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10.6 — Convergence in L"p
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So, (X, S, n) measure space. So, Lp(u) are the spaces, 1 < p < oo with the norm norm p.
So, we say fn - fin Lp(u) if ||fn i |p — 0 as n tends to infinity. So, Cauchy if for every

epsilon positive there exists a capital N such that for all n, m = n we have || fn — fm|| < e

So, we want to show that these spaces are complete, namely this symmetric space empty
Cauchy sequence converges to its metric, then it is a complete space and a complete norm
linear space is called a Banach space. So, we want to show you all these L p spaces are

Banach spaces.

So, before that let us start with the following lemma.

Lemma. So, 1 < p < o0. So, {fn} Cauchy in Lp(u) implies the sequence is Cauchy in
measure.

proof: so, let € > 0, then for all n, m positive integers, we define



A0 = (x €X:If () —f, (0] = )

So.then [ |f —f [dx 2 [ |f —f ["dx2en@A ().
X 4 . ’

f—f II°

So, this implies that u(An’m(e)) < >
So, fn Cauchy in Lp(u) implies of course, that mu so, there exists a N such that for all n, m

greater than equal to so, given 1 > 0 and greater than equal to capital N we have
If —f Il <n.
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Therefore, for all n,m > N, we have u(Anm(e)) < _qp_ and therefore, you have {fn}is
), €

Cauchy in measure.

So, now, we have the following important theorem, sometimes called the Riesz Fischer

theorem also.

Theorem: So, let (X, S, n) measure space, 1 < p < oo. Then Lp(u) is a Banach space. So

that is all we need to show.



proof: Step 1: 1 < p < oo, So, then {fn} Cauchy implies Cauchy in measure by the lemma

above and that implies there exists a subsequence { fn }, which is almost uniformly Cauchy.
k

We have seen this before given a sequence which is Cauchy in measure, then there is a sub
sequence which is almost uniformly Cauchy.

And, that implies that fn — f, almost everywhere. So, there implies, there exists f

k
measurable such that fn k converges to f pointwise almost everywhere. So, let epsilon be, we
now have a candidate for the limit, so, we have to show this so, to show f belongs to L p mu

and fn goes to fin L p mu.

So, if we can show these two things, our theorem is proved so, let epsilon be positive and let
N belong to the natural numbers such that norm fn minus fm p is less than epsilon for all n, m

greater than equal to capital N. So, keep n fixed of course, n is greater than N.
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So, by Fatou lemma, since fm converges fm converges to f almost everywhere and therefore,

youhave [ |f — fI"du < lim inf[|f — fl"dp <€ (¢vn = N).
X

n— oo X k

=>f - fel’ (W= feL(w.

Also, fn - fin Lp(u).
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Step 2: p = oo. So, fn Cauchy in Lp(u), so, there exists for every k in N there exists

1
Nk € N such that for allm,n > Nk,wehave ||fn —fm|| <0

. . c 1
i.e., there exists Ek C X, u(Ek) = 0on Ek, and |fn(x) - fm(x)| <— So, let

E = U, _ ooEk, wE) =0, Ef = n, _ cx)Ekc. So, if x € E', it is in every Ek compliment and

1 1

therefore, fn(x) is Cauchy. So, you take f(x) = lim fn(x), f(x) = 0onkE.

n—> o

And, you have that f € Loo(u) and fn - fae X



So, that proves that this is a Banach space. So, this completes the proof on both (())(11:58).
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Corollary: (X, S, mu) measure space, 1 < p < ooand fn - fin Lp(u). Then, there exists a

subsequence {fn } such that fn - f ae.
k

k

proof: fn — f almost everywhere if p = oo, we have already seen and there exists fn - f
k

a.e.if 1 < p < oo. We have seen this.

So, seen in the proof of the theorem above and therefore, this. Now, you can also explicitly
construct the subsequence in case of 1 less than equal to p less than infinity and then you can
find in almost any textbook on measure theory in particular I will say compare Rudin Real

and Complex Analysis or the book I am following Measure and Integration Trim77.

So, you can find it in either of the books and explicit construction now. There is an additional
advantage in this proof that in fact explicit construction of fn k also shows that the sub
sequence is bounded above by a fixed function. Anyway, that is not very important for the
moment and so, we will not give the proof we have used the convergence in measure

arguments which is an easier argument to do.
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Theorem: 1 < p < oo, {fn} sequence in Lp(u), fn — falmost everywhere. Then
. D . .
f, = finl () ifandonlyif[|f [ - lIfIL
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proof: so, fn - fin Lp(u) is a continuous mapping and therefore, this implies that

[ fnllp - |If ||p. So, that is obvious and therefore, you do not have to do anything here.

Conversely, fn — f almost everywhere and ||fn||p - ||f||p fn,f € Lp(u).



So, for that we take Fn = |fn — f|p. So, to show the integral fn dm over x goes to 0. So, that

is what we want to show. Now, t — |t|p is convex. Therefore,
_ P p—1 p Py
F=If —fF<2(f P+ If) =6
Then Gn is integrable, F ) S Gn, and F L Gn almost everywhere. Further by hypothesis we

havefGndu - [ Gdp <+ oo,
X X

integral Fn, sorry integral Gn d mu over x goes to the integral over G sorry x G d mu, this is
wrong Gn goes to G almost everywhere and where G is equal to 2 power p mod f p and this is

also finite because what is this integral this is 2 power p norm f p power p.
So, this, so, by generalized dominated convergence theorem we have seen this, this implies
that [ F dp = 0, i.e, f = finL"(w).
X
So, that completes. So, we have shown that it is a Banach space we have seen about

convergence. So, next time we will take up some other special properties of L p spaces like

density and then separability and such topological properties.



