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So, we now start a new chapter spaces. The Spaces or the Lebesgue spaces are Banach𝐿𝑝 𝐿𝑝

spaces, which are a very rich source of examples and counterexamples in functional analysis,

and they also very naturally occur in many applications of mathematics, especially the study

of partial differential equations. And so, these spaces are very, very important and they have

such interesting properties.



So, first we will look at some basic properties. So, measure space and(𝑋, 𝑆, µ) 𝑓: 𝑋 → ℝ

measurable function. We are dealing with real valued functions with many things. Almost

everything that I say we carry over to complex valued functions also. So, .1 ≤ 𝑝 < ∞

Define

||𝑓||
𝑝

= (
𝑋
∫ |𝑓|𝑝𝑑µ)

1
𝑝 .

So, we say f is p-integrable if . (So, integrable if p equals 1, so, when p equals 1 is||𝑓||
𝑝

< ∞

just a notion of integrability and square integrable if p equals to 2, otherwise is called the p

integral).

Then let and we said Now, define𝑀 > 0 {|𝑓| > 𝑀} = {𝑥 ∈ 𝑋:  |𝑓(𝑥)| > 𝑀}.

||𝑓||
∞

= inf  {𝑀 > 0:  µ({|𝑓| > 𝑀}) = 0}.

So, this is called the essential supremum of f and we say that f is essentially bounded if ||𝑓||
∞

is finite.
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Definition: , the conjugate exponent of p is defined by1 < 𝑝 < ∞ 𝑝' 1
𝑝 + 1

𝑝' = 1.

So, if p=1, conjugate exponent and vice versa.𝑝' = ∞

Lemma: conjugate exponent, then a, b greater than or equal to 0 then1 < 𝑝 < ∞,  𝑝'



𝑎
1
𝑝 𝑏

1
𝑝' ≤ 𝑎

𝑝 + 𝑏
𝑝' .

proof: So, let Consider the function And, when k𝑡 ≥ 1.  𝑓(𝑡) = 𝑘(𝑡 − 1) − 𝑡𝑘 + 1.

belongs to 0, 1. So, k is between 1.

So, what is f dash t, f dash t is equal to k into 1 minus t power k minus 1 and this is greater

than or equal to 0. Since k is less than 1 and t is greater or equal to 1 and therefore, since f of

0 equal to 0, sorry f of 1 and f is increasing in one infinity and consequently you have the t

power k is less than equal. So, this function has to be always non-negative f of t so, in place f

t is greater than equal to 0. So, t power k is less than equal to k times t minus 1 plus 1.
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Now, if a or b equal to 0 results are trivial. So, you can assume . So, without𝑎 > 0,  𝑏 > 0

loss of generality you can assume that So, you take𝑎 ≥ 𝑏 > 0.

𝑡 = 𝑎
𝑏 ≥ 1,  𝑘 = 1

𝑝 < 1

and then apply (*). So, (*) this inequality and you will get to get that.
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Proposition. (Holder’s inequality). Let , and is conjugate exponent. If f is p1 ≤ 𝑝 < ∞ 𝑝' 

integrable and g is integrable (essentially bounded if p = 1), then𝑝'

(**)
𝑋
∫ |𝑓𝑔|𝑑µ ≤ ||𝑓||

𝑝
||𝑔||

𝑝'
 .

proof: so, let us take Then𝑝 = 1,  𝑝' = ∞. |𝑓(𝑥)𝑔(𝑥)| ≤ |𝑓(𝑥)|||𝑔||
∞

 𝑎. 𝑒.

So, now, if you integrate, so,
𝑋
∫ |𝑓𝑔|𝑑µ ≤

𝑋
∫ |𝑓|𝑑µ .  ||𝑔||

∞
⇒  (**).
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So, now, we assume that . And then again (**) trivially true if1 < 𝑝 < ∞ ⇒ 1 < 𝑝' < ∞

. Because in that case f of g equal to 0 almost everywhere. So, we can||𝑓||
𝑝
 𝑜𝑟 ||𝑔||

𝑝
= 0

assume that . So, assume . Then, apply lemma to||𝑓||
𝑝

≠ 0 𝑜𝑟 ||𝑔||
𝑝

≠ 0 ||𝑓||
𝑝

=  ||𝑔||
𝑝

= 1

, then what will you get|𝑓(𝑥)|𝑝,  |𝑔(𝑥)|𝑝' |𝑓(𝑥)𝑔(𝑥)| ≤ |𝑓(𝑥)|𝑝

𝑝 + |𝑔(𝑥)|𝑝'

𝑝' .
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So, then
𝑋
∫ |𝑓𝑔|𝑑µ ≤ 1

𝑝 + 1
𝑝' = 1.



For the general case apply this to to get (**).𝑓
||𝑓||

𝑝
,  𝑔

||𝑔||
𝑝'

Remark: When Holder’s inequality is the same as the Cauchy Schwarz𝑝 = 𝑝' = 2,  

inequality that is

𝑋
∫ |𝑓𝑔|𝑑µ ≤ (

𝑋
∫ |𝑓|2𝑑µ)

1
2 (

𝑋
∫ |𝑔|2𝑑µ)

1
2 .
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So, then we have the next proposition.

Proposition: (Minkoski’s inequality) f, g, p integrable essentially bounded if p1 ≤ 𝑝 ≤ ∞ 

equals infinity then f+g is also p integrable and

(**)||𝑓 + 𝑔||
𝑝

≤ ||𝑓||
𝑝

+ ||𝑔||
𝑝 

proof: so, mod f x plus mod gx plus gx sorry is less than or equal to mod f x plus mod gx. So,

this implies that let us call this triple star for p equals 1 or p equals infinity, because that is

obvious from this inequality. So, we can assume that 1 less than p less than infinity. Again,

the result is trivial if the norm f plus g p equal to 0, so, let us I am jumping a bit, so, let me

not say that. So, now f, g p integrable and t going to t power p is a convex function.
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So, by definition of a convex function, you get that mod f x plus gx power p by 2 power p

should come is less than equal to 2 power p minus 1 of mod f x power p plus mod gx power

p. So, this implies that f plus g is also p integrable. Just integrate both sides you will get this.

So, triple star trivial if norm f plus g p is 0. So, without loss of generality assume norm f plus

g p is not equal to 0.

So, we now going to write mod f of x plus gx power p d mu x this is less than or equal to

integral over x using the triangle inequality f x plus gx power p minus 1 mod f x d mu x plus

integral over x mod fx plus gx p minus 1 gx d mu x. So, we want to apply Holder’s inequality

to each of these terms.
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So, we will for f is in p integrable therefore, I can apply here so, I want to know if this the

first term is p dash integrable. So, let us take mod f x plus gx power p minus 1. So, into p

dash so, we want to know if this function is integrable. But what is this is p minus 1 p dash is

nothing but pp dash minus p dash but p plus p dash equals pp dash and therefore, pp dash,

means p dash is nothing but p and therefore this is equal to mod fx plus gx power p and that

is integrable.

And so, what is norm fx f plus g power, sorry norm of mod f plus g power p minus 1, what is

its norm, its p dash norm? So, the p dash norm is nothing but power 1 by p dash into the

integral over x of the function here, so, f plus g power p d mu, because that is what this p

dash and that is equal to nothing but norm f plus g p over p by p dash.



Because this thing is nothing but the pth power of the norm and therefore, you have that this

is f plus g power p by p dash. So, now, having done all this work, now, we apply Holder's

inequality to each of the terms here by Holder’s. So, what is the left-hand, side left hand side

is f plus g p whole power p. So, norm f plus g p whole power p is less than equal to, now we

want p dash norm of this function so norm f plus g p p by p dash into norm fp.

And similarly, the other term would give your normal gp, this will give you norm fp and this

would have given you norm gp. Now, you can because f plus g p is not 0 so, you can divide

and then p minus p by p dash is nothing but 1. Because 1 by p plus 1 by p dash equal to 1, so,

1 plus p by p dash equal to p. So, p minus p by p dash is nothing but 1 so, you get norm f plus

g p is less than equal norm f p plus norm gp. So, this proves the Minkoski’s inequality.
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So, now, if you look at so, p integrable functions form a vector space and if you take norm f p

is of course, greater than equal to 0 norm 0 p is 0 norm of f plus g p is less than or equal to

norm f p plus norm gp. And of course, the norm of alpha f p this distributed check is mod

alpha times norm fp.

So, it shows everything which is similar to a norm. But norm f p equal to 0 only implies that f

equal to 0, almost every pair it is not f equal to 0. So, this is a problem, so, you cannot make

it a norm. So, what we are going to do is to do the usual thing we do in mathematics, namely

question the difficulty.

So, we say f is equal to g if f equals g almost everywhere. Now, if you take the equivalence

classes from a vector space why? So, if you take f is a representative. So, if you take two

equivalence classes say f and g you take a representative listing because if f is f 1 is

equivalent to f2, g 1 is equal to g2 then f1 plus g1 is equivalent to f2 plus g2. And alpha f1

and then alpha times f equals alpha f1 is equivalent to alpha f2 and therefore, any

representative you take through point (())(24:31) and then take the equivalence class then you

will get the. So, this forms a vector space.
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And, is constant on each equivalence class because if f and g that is f equivalent to g,||. ||
𝑝
 

then norm fp is the same as norm gp. So, you do not have to worry, you can define the norm

as the norm. So, ||[𝑓]||
𝑝

= ||𝑓||
𝑝
.

This implies that ||𝑓||
𝑝

= 0 ⇒ 𝑓 = 0 𝑎. 𝑒.,  𝑖. 𝑒.,  𝑓 ∼ 0,  [𝑓] = [0].

So, using these equivalence classes we will define a nonlinear space.
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Definition: (X, S, ) measure space, The space of all equivalence classesµ 1 ≤ 𝑝 < ∞ .  

under the equivalence relation of equality almost everywhere of all p integrable functions is a



normed linear space with the norm of an equivalence class being the of any||. ||
𝑝

representative of that class this space is denoted . The equivalence class classes of all𝐿𝑝(µ)

essentially bounded functions is a normed linear space with the norm of an equivalence class

being defined as the of any representative this space is denoted .||. ||
∞

𝐿∞(µ)

So, we are talking of equivalence classes, but actually we will be working with a

representative of every equivalence class. So, whenever we will say function, but what we𝐿𝑝

are really talking of is not a function but an equivalence class of functions, but all the

functions in the same equivalence class are equal to each other almost everywhere. So, any

computation you do, especially integration related computations, it does not matter which

representative you take because if two functions are equal almost everywhere, then the

integrals are all preserved.

And therefore, we will remember that we are talking of equivalence classes, but we will not

make a fuss we will just say function in it means a function which is an equivalence class𝐿𝑝

of a p integrable function or essentially bounded function. So, this is the notion. So, now that

we have defined the L p spaces, next time we will take up some of its properties.


