Measure and Integration
Professor S. Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Lecture No-65
Exercises
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Before starting the exercises, I want two clarifications about the previous lecture. So when

extending the Radon-Nikodym theorem when p, v are o-finite measures, then I said that X

can be writtenas X =U _E =U__ F, u(F ) < ooVn v(F )< ooVm {E}{F }

all disjoint. We split up into disjoint sets and then of course, we took En intersection Fm and
then extended it to the, from the finite case to the sigma-finite case. So this is the first

clarification.

The second 1 is about the Lebesgue decomposition theorem. This is more serious. So what

we did was we said that v << v + p and we then saw v(E) = [ fd(v + p).
E

And then we took thisat A = {x € X: f(x) = 1} , v(A) = v(4) + pn(4)= p) = 0.
But this only because when nu(A) is finite.

So it works, so this about the proof works when v is finite because I have been harping on
this a long time, when you subtract and cancel things on either side, then they just you can

only do it if it is a finite quantity.



So how do you do? So assume now nu is sigma-finite and then of course, we rewrite

X = U _ En, V(En) < ooVn, {En} disjoint.

1
. n n n n n n
Sothereex1stsv0 yV V=V, + v, onEn, andv0 IRNTR v, << W
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And then you take An (- En, u(An) =0, von =0on En\An. Let me be more precise En
minus An because everything is now defined only on En.

So now, if E is in S, you define VO(E) =y von(E N En), V1(E) =y vln(E N En)
n= n=

1 1

[ee]

andv (E) = ; VENE)= X, (ENE) +v"(ENE)) =v(E) +v(E)
=1

n=1 n=
And therefore, we havev = v 0 +v

1
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Now you said A = u_, An, nd) =0, 4 = n_, An, EcA = n _ A

Then what is nu naught of E? VO(E) = ) von(E N En). And then but what is E N En? E
n=1

intersection En is E is contained in A complement which is the intersection of all this. So this

is contained in An complement because of the definition of this. So this is equal to

. . c
intersection An .

So E intersection An complement and therefore each one of them is 0 and therefore this is

equal to 0. So v, = 0on Anc =v, L u. The other one is more easy. Of course, if

WE) =0=>pENE)=0=v " (ENE) =0

Therefore, you have vl(E) =y vln(E N En) =0=v <<
n=1

And this completes the proof of the thing in the sigma-finite case. So the proof which I gave
in the previous video is only applicable to finite measures when nu is finite but then it is a

very simple extension to the sigma-finite case.
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Okay so now let us do some exercises.

(1) : (X, S) measurable space, | signed measure which is finite. Show that for every E in S,

= E
sol: so p is finite = u+, u are finite. And therefore, if |f| < 1, then

| fdul = 1S fdn" = [ fdu'| < u"(B) — u (E) = |ul(E).
E E E

Therefore sup|f|<1{ffdu} < |u|(E).
=1 E
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Now we have to show the reverse inequality. So you take X = A U B, Hahn decomposition

and you take f = X, ~ Xg SO |f] = 1and if you take

[fdu=[fdu" = [fdp =" ANE) =W (BNE)—w (ANE)+u (B NE)
E E E
=W @ANE) +u (BNE) =u (E) +u (B) = |u(E)

This says that sup|f|<1{f fau} = |p|(E).
= E

And so we have both the inequalities and consequent and hence the result.
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(2). (X, S) measurable space, u signed measure and p = u+ —u . It is the Jordan

decomposition. If there exists measures p oM, such thatp = p M L show that

Similarly,

0<u(E)=—wENB) = W,(E N B) —p(ENnB) <u(EnB) <plE)

y
=
IA

.
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(3). (X, S) measurable space, L, v o-finite measures and p = v (i.e, p << v, v << ).

Show that% = div a.e. [y
dp
solution. So let us say f = —35—, = Z—:, f,g = 0.So

v(E) = [ gdu = [ gfdp.
E E



Therefore, for every E in S, you have [(1 — gf)du = 0. So now, you take
E
E = {(1 - gf) >~} Then this will imply that
V(En) = 0=>Vv(E) =0, whereE = {(1 — gf) > 0}.
Similarly, v(F) = 0, where F = {(1 — gf) < 0}.

This implied that u(E) = p(F) = 0.

Okay, so and so you have that 1 = gf a.e. [u], a.e. [v].

And that is exactly what we wanted to prove. Okay so with this we conclude this chapter. So

next time we will start with an important topic namely Lebesgue spaces or L”p spaces.



