Measure and Integration
Professor S. Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Lecture N0-64
Radon-Nikodym Theorem
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So we proved the Radon-Nikodym theorem. So (X, S) measurable space, p, v finite

measures, v << L, then there exists f- non-negative, integrable with respect to p such that

for every E in S, v(E) = [ fdu and f unique up to equality almost everywhere with respect
E

to .

So now we want to extend this to the general cases. So let us assume that p, v o-finite

measure, then you have X = U _, En =u__ Fm, u(En) < oo, V(Fn) < oo. So then

[oe]

X =U U Oo(E N F ). So there exists f on E N F_ non-negative, integrable with
m=1 n m nm n m

respect to p such that v(E) = [ f duforalEcE NF .
o

So set f = fnm on En N Fm. Then for all E in S, we have v(E) = [ fdu. Check! This f need
’ E

not be integrable now and because that is because nu is no longer a finite measure. If it is a

finite measure, f has to be integrable, otherwise it need not be integral.
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So then next is so if mu and nu are sigma-finite measures, we still have the Radon-Nikodym
theorem holding true. So now assume that nu is a sigma-finite, sigma-finite signed measure,

then you can write nu equals nu plus minus nu minus and these two are sigma-finite

measures. So nu plus, nu minus are also absolutely continuous with respect to mu.

And therefore, for every E in S, you have nu plus of E, nu plus minus of E equals integral f
plus minus dm over E. So now you take f equals f sub plus minus f minus. This is not the
positive and negative parts but simply the difference of these two functions which we have
here. And then you have that nu(E) equals the integral over E f d mu for every E in S. Again

check! Again these are all very trivial checkings which you can do.
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So finally, let p also be o-finite signed measure, let X = A U B, a Hahn decomposition. So

if E is contained in A, then |p|(E) = u * (E), and if E ¢ B, |u|(E) = u (E).

> ond, v<< u*onB v<<pu.

So then for every E in S, E contained in A, you have that v(E) = | fAd . Similarly, for every
E

E in S, E contained in B you have v(E) = [ deu. Okay, so now if E belongs to S, then you
E

havev(E) = V(E N A) + vE N B) = [ fdu' + [ fdu =[(fx, - fx,)du
ENA EnB E
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Finally, we have the theorem, Radon-Nikodym in its full generality.

Theorem: (Radon-Nikodym). So (X, S) measure space, |, v o-finite signed measures and

v << |, then there exists a measurable function f such that v(E) = [ fdu , VE € S.
E

So this question of integrability does not come now because you do not have finiteness of the

measurcs.

Definition: (X, S) measure space, y, v o-finite signed measures and v << p. Let f be such

that v(E) = [ fdp , VE € S. Then f is called the Radon-Nikodym derivative of v with
E

respect to L.

And symbolically we write the Z—: = f. So why this notation? So let us recall that if you had

mu, nu measures and nu(E) equal to integral f d mu over E, then this implies that integral g d

nu over X is equal to integral over X fg d mu.

We have seen this thing. We proved it first for characteristic functions, then for simple
functions, then for some theorem we monotone or dominated, we proved it for the general

casc.

So this exercise which we or proposition which we have already seen, so symbolically we can
write d nu equals f d mu and again symbolically we write d nu by d mu is equal to f. These
are all symbolic calculations so do not take them too seriously. Otherwise, it is just notation

and therefore, this is the reason why we call it the Radon-Nikodym derivative.
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Proposition: (X, S) measurable space, A, | o-finite measures defined on S and p << A,

then v o-finite measure v << J, thenv << A, and

dv __ dv dp

o= a o e [A].

dv d
proof- So let f = e 9= d—;. Then v(E) = [ fdu = [ fgdy.
E E
All these are non-negative because we are having measures and then we have seen this. Okay.

So you have this proved earlier. And by the uniqueness with respect to lambda therefore, you

have %fg a.e. [A].

And that proves this proposition.
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Okay, so now we are going to start a new topic called singularity.

Definition. (X, S) measurable space, 1, v measures. So, we say v is singular with respect to p
and the notation is v L p, if there exists a E in S such that p(E) = Oandv = Oon E ‘.
So this is the opposite. So if you have absolute continuity, then mu(E) equals 0 implies nu(E)

equals 0 and for all subsets whereas here nu is 0 where mu is not 0, okay, and vice-versa. So

this is the notion of singularity.
So, example. So let us take ml (Lebesgue measure) on R and delta (Dirac measure)
concentrated at the origin 0. So now if you take E equal to singleton 0 and then you have a

ml of E equal to 0 and delta is identically 0 on E ‘. So the delta is singular with respect to

ml.

Example again: so (X, S) measurement space, mu is a signed measure, okay, then u+ Lp

and p L u+ and the corresponding set which you are looking at will be A or B in the Hahn

decomposition according to it. Okay.
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Proposition. This is called the Lebesgue decomposition. (X, S) measurable space, |, v o

-finite measures. Then there exists two uniquely defined measures v, and v, such that
V=V, +v1, Vol L, v1<< LL.

So I can decompose nu into two measures- nu naught and nuland nu naught will be singular
with respect to mu and nul will be absolutely continuous with respect to mu. So every
measure can be decomposed into two parts, one which is singular with respect to another
given measure and the other one will be absolutely continuous with respect to the same

measure.
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proof. We have v << p + v. This is obvious and therefore, there exists f (non-negative)

such that v(E) = [ fdu(u + v), VE € S. So you take A = {x € X: f(x) = 1}. And let
E

B=A = {x € X: f(x) < 1}. And fis of course non-negative; we already know. Okay.

Sov(4) = £fd(u +v) > £d(u + v) = u(4) + v(4).
= u(4) = 0.
So define for E in S, VO(E) = v(E n 4), vl(E) = v(E N B).
Then that of course, obviously implies that v = v, TV, n) =0, v, = OonB = A",
This means that v, IRNTH
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So, to show nul is absolutely continuous with respect to mu. So let mu(E) equal to 0, then
nul of E equals integral E intersection B d nu which is equal to integral f d mu over E

intersection B plus integral E intersection B f d nu.

But mu(E) is equal to 0. So this term will disappear and therefore, you have that integral E
intersection B of 1 minus f d nu equal to 0. But on B, 1 minus f is strictly positive and

therefore, this implies that nu of E intersection B equal to 0 that is nul of E equal to 0.



So mu(E) equals 0 implies nu(E), nul of is 0 and therefore, you have nul is absolutely
continuous with respect to mu.

~ ~

Uniqueness. So let us take v = Votv,=votv, v v Ly <<y <<
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So let A be the set such that p(4) = 0 and v, = 0 on A compliment and A tilde, u(;f) = 0;

nu naught tilde identically 0 on A tilde complement. So we just applied the definition so far.

Okay.

~C

Sop(AUA) = 0and (AUA) =A4°NA.



So you said, A = v, —v, << i

Since p(4 UZ) = 0, wehaveA = 0on A UZ.

Because of all subsets, mu is a measure. So it is true for all subsets also because of the

absolute continuity not because lambda is a measure.

~

Now on the other hand, we have that Vo TV, = Oon(A U Z)C, i.e. A = 0.

~

Thatisv. =v_and v. = v_.
0 0 1 1

So the decomposition, Lebesgue decomposition, is uniquely defined here. So this means here
we have that lambda is both singular and absolutely continuous with respect to mu. That is
what we have had and that shows that it has to be truly a zero-measure. So this completes. So

we will do some exercises before we conclude this chapter.



