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So today we look at the Radon-Nikodym theorem. So this is one of the important theorems in

measure theory.

Theorem: (Radon-Nikodym). So finite measure space, finite measure, .(𝑋, 𝑆, µ) ν ν << µ

Then there exists f - non-negative measurable function which is integrable with respect to µ

such that for every E in S, .ν(𝐸) =
𝐸
∫ 𝑓𝑑µ

And the function f is unique in the sense that if g is another such function, then f equals g

almost everywhere with respect to mu. So there is essentially only one function because you

are integrating with respect to mu any other function which has the same property should be

equal almost everywhere then the integrals will be the same for every set E.
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proof: step 1: (uniqueness). So let Then for every let usν(𝐸) =
𝐸
∫ 𝑓𝑑µ =

𝐸
∫ 𝑔𝑑µ 𝑛 ∈ ℕ ,  

take .𝐸
𝑛

= {𝑥 ∈ 𝑋:  𝑓(𝑥) − 𝑔(𝑥) > 1
𝑛 }

Then 0 =
𝐸

𝑛

∫(𝑓 − 𝑔)𝑑µ > 1
𝑛 µ(𝐸

𝑛
) ⇒ µ(𝐸

𝑛
) = 0.

⇒ µ({𝑥 ∈ 𝑋:  𝑓(𝑥) − 𝑔(𝑥) > 0}) = µ(∪
𝑛=1

∞𝐸
𝑛
) = 0.

Similarly, µ({𝑥 ∈ 𝑋:  𝑓(𝑥) − 𝑔(𝑥) < 0}) = 0 ⇒ µ({𝑥 ∈ 𝑋:  𝑓(𝑥) − 𝑔(𝑥) ≠ 0}) = 0.

That is f=g, almost everywhere with respect to . So we have dispensed with the uniqueness.µ

So now we want to find this function. So the first idea is to find the candidate.
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step 2. So 𝐿(µ) = {𝑓:  𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑚𝑢}.

𝐾 = {𝑓 ∈ 𝐿(µ):  𝑓 ≥ 0,  
𝐸
∫ 𝑓𝑑µ ≤ ν(𝐸) ∀ 𝐸 ∈ 𝑆}.

So first of all, K is non-empty. So why is that non-empty? To see this, there exists an epsilon

positive and A such that mu A is positive and A is a positive set for nu minus epsilon mu.

This was one of the last propositions which we proved, because everything is now finite and

therefore, this theorem can be applied. So mu, nu are all finite and therefore, we can apply

this one. And therefore, now you put . So then and then it is also𝑓 = ϵχ
𝐴

𝑓 ∈ 𝐿(µ)

non-negative. It is integrable because the measure of A is finite and therefore, it is integrable.

Now,
𝐸
∫ 𝑓𝑑µ = ϵµ(𝐸 ∩ 𝐴) ≤ ν(𝐸 ∩ 𝐴) ≤ ν(𝐸) ⇒ 𝑓 ∈ 𝐾.

So now, So now, you set
𝑋
∫ 𝑓𝑑µ = ϵµ(𝐴) > 0. α = sup

𝑓∈𝐾
𝑋
∫ 𝑓𝑑µ,  0 < α ≤ ν(𝑋) <+ ∞.
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Step 3. So , therefore there exists such that So set f equalsα > 0 𝑔
𝑛

∈ 𝐾 
𝑋
∫ 𝑔

𝑛
𝑑µ > α − 1

𝑛 .

max f 1, sorry, g 1 to g n, f n. So again this is going to be equal to 0 and claim, f n also

belongs to K. So we want to show this. So En i equals the set of all x in X, so set f n x equal

to g i x, 1 less than or equal to i less than equal to n. Then capital X is equal to union i equals

1 to n En i, because E, f n must be equal to some g i, it is only a maximum, so it is equal to

some g i for every X, f n x is equal to g i x for some I, and therefore, x is equal to this.

So now, you set Fn 1 equals En 1 and Fn i equal to En i minus union g equals 1 to i minus 1

En j. Then, for 1 less than I less than equal to n Fn i are disjoint. Fn i is contained in En i and

x equals union i equals 1 to n En i equals union i equals 1 to n Fn i. It is the usual way we

write the union as a disjoint union. So if A belongs to S, let us take the integral over E f n d

mu.

This is equal to sigma i equals 1 to n integral E intersection Fn find mu, but this is equal

sigma i equals 1 to n integral E intersection Fn i on Fn i, Fn i is contained in En i, remember,

and on En i f n and g i are the same. So this is g i d mu. So this is less than or equal to sigma i

equals 1 to n nu of E intersection Fn i. And that is equal to nu E. And again, so this implies

that f n belongs to K.
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step 4: so f_n is a non-negative and increasing sequence.. So let Then by the𝑓 =
𝑛 ∞
lim
→

𝑓
𝑛
.

monotone convergence theorem, you have

𝐸
∫ 𝑓𝑑µ =

𝑛 ∞
lim
→ 𝐸

∫ 𝑓
𝑛
𝑑µ ≤ ν(𝐸),  ∀ 𝐸 ∈ 𝑆.

⇒ 𝑓 ∈ 𝐾 ⇒
𝑋
∫ 𝑓𝑑µ ≤ α.

On the other hand, you have
𝑋
∫ 𝑓𝑑µ ≥

𝑋
∫ 𝑓

𝑛
𝑑µ ≥

𝑋
∫ 𝑔

𝑛
𝑑µ > α − 1

𝑛  ,  ∀ 𝑛.

And therefore, you have that
𝑋
∫ 𝑓𝑑µ = α,  𝑓 ∈ 𝐾.

So we have found a maximal element.
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Step 5. So define So f integrable implies measure, andν
1
(𝐸) =

𝐸
∫ 𝑓𝑑µ,  𝐸 ∈ 𝑆. ν

1
ν

1
<< µ.

So set So this is a signed measure both nu, nu 1 are finite So the difference isν
0

= ν − ν
1
.

well defined, and therefore, it is a signed measure.

So f belongs to K, so this implies that ν
1
(𝐸) =

𝐸
∫ 𝑓𝑑µ ≤ ν(𝐸).

measure,⇒ ν
0

≥ 0,  ν
0
 ν

0
<< µ.
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Step 6. Again, finite measures implies there exists any eta greater than 0 and F such thatν
0
,  µ

and F is a positive set for . So now, for every E in S you haveµ(𝐹) > 0 ν
0

− η µ

ηµ(𝐸 ∩ 𝐹) ≤ ν
0
(𝐸 ∩ 𝐹) = ν (𝐸 ∩ 𝐹) − ν

1
(𝐸 ∩ 𝐹) = ν (𝐸 ∩ 𝐹) −

𝐸∩𝐹
∫ 𝑓𝑑µ.

Set So if E belongs to S, then you haveℎ = 𝑓 + ηχ
𝐹

≥ 0.



𝐸
∫ ℎ𝑑µ =

𝐸
∫ 𝑓𝑑µ + ηµ(𝐸 ∩ 𝐹) ≤

𝐸
∫ 𝑓𝑑µ + ν(𝐸 ∩ 𝐹) −

𝐸∩𝐹
∫ 𝑓𝑑µ.

=
𝐸∩𝐹𝑐

∫ 𝑓𝑑µ + ν(𝐸 ∩ 𝐹) ≤ ν(𝐸 ∩ 𝐹𝑐) + ν(𝐸 ∩ 𝐹) = ν(𝐸).

So this implies that h is also in K. But,

𝑋
∫ ℎ𝑑µ =

𝑋
∫ 𝑓𝑑µ + ηµ(𝐹) > α,

and that is a contradiction because h is in K and alpha is a supremum of all those integrals.

Therefore, this implies that ν
0

≡ 0 ⇒ ν = ν
1
,   ν(𝐸) =

𝐸
∫ 𝑓𝑑µ  ,  𝐸 ∈ 𝑆.

And that completes our proof of the Radon-Nikodym theorem. So as I said earlier, we will

also have, we will now generalize this to other cases, namely when finally, when mu and nu

are both sigma finite sign measures. So that is the most general form. So right now, we have

proved the theorem for every finite pair of finite measures, with one which is absolutely

continuous with respect to the others.


