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Hahn Decomposition:

So, we defined, we were looking at signed measures. so signed measure is a countably

additive function which is 0 on the empty set and takes at most plus 1, plus infinity or minus.



It cannot take both of them. And then given a signed measure, we proved some standard

properties and then we introduced the notion of a positive set and the negative set.

A positive set is a set whose measure is less non-negative, and not only that, every subset of it

is also of non-negative measures. Similarly, a negative set has a non-positive measure and the

same is true for every subset of it. And then, so now, we have following very important

theorem.

So, this is called the

Theorem (Hahn Decomposition):. So measurable space signed signed(𝑋, 𝑆) µ

measure, then there exist two disjoint sets and such that so you, that is why𝐴 𝐵 𝑋 = 𝐴 ∪ 𝐵

we call it a decomposition, and is a positive set, and is a negative set. So, we are going to𝐴 𝐵

prove this in several stages.

Proof: So, without loss of generality, assume for all . So− ∞ < µ(𝐸) ≤+ ∞ 𝐸 ∈ 𝑆

we are saying that it takes the value plus infinity. If you are going to, if you took the value

only minus infinity then you work with minus mu in this proof, and everything will go

through.

Step 1: so N, collection of all negative sets. And you define , B in N. Soβ = 𝑖𝑛𝑓 µ(𝐵) ≤ 0

of course, this will be less than or equal to 0. So then let B i be a minimizing sequence, i

equals 1 to infinity, a sequence of sets in n such that decreases to B. You can alwaysµ(𝐵
𝑖
)

find the minimizing sequence.

So . Now, we have already seen that a countable union of negative sets is negative,𝐵 =
𝑛=1

∞

⋃ 𝐵
𝑖

therefore B belongs to N. And that also implies that beta is therefore less than or equal to

. On the other hand, you said .µ(𝐵) 𝐶
𝑛

=
𝑖=1

𝑛

⋃ 𝐵
𝑖

Then increases to B and therefore, you have is the limit as n tends to infinity, .𝐶
𝑛

µ(𝐵) µ(𝐶
𝑛
)

Now, we have seen in the proposition just at the end of the previous session that is𝐶
𝑛

µ(𝐶
𝑛
)

less than or equal to the minimum. So in particular, this is less than equal to .µ(𝐵
𝑛
)



In fact, it is, is less than the minimum of to . So it is less than or equal to and𝐶
𝑛

𝐵
1

𝐵
𝑛

𝐵
𝑛

therefore, this implies that , which is the limit of the is also less than or equal limitµ(𝐵 ) 𝐶
𝑛

of the and that is equal to beta. So this implies that equal to beta. And inµ(𝐵
𝑛
) µ(𝐵 )

particular, in fact the beta is finite. And all negative sets have finite measure.
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Step 2. So we have got a set of negative measure and its lowest possible value of that

measure. so we expect that to be the set which we want to and so we take its complement

𝐴 = 𝑋\𝐵

So claim is a positive set. Then our theorem is proved. So if not there exists a and𝐴 𝐸
0

⊂ 𝐵

. So that is, that is why, how a positivity will fail for the set.µ(𝐸
0
) < 0

So assume, if possible, is a negative set. But then are disjoint. And therefore, E𝐸
0

𝐸
0
 𝑎𝑛𝑑 𝐵

naught union B is also a negative set and by additivity is . This isµ(𝐸
0

∪ 𝐵) µ(𝐸
0
) + µ(𝐵 )

strictly less than 0, so this is strictly less than mu of B equal to beta. But that is a

contradiction, because beta is the infimum of all that.

You cannot have a negative set which has measure less than beta. And therefore, contains𝐸
0

a subset of positive measure, but is in N. And this implies that mu of E naught is finite. So𝐸
0

are all subsets of . Finite means finite measure. of finite measure and so, and all the𝐸
0

𝐸
0

subsets of , because a subset of set of finite measure is also finite.𝐸
0

Step-3, Let be the smallest positive integer such that there exists a and is𝑘
1

𝐸
1

⊂ 𝐸
0

µ(𝐸
1
)

bigger than or equal to 1 over . That means, we are looking for the largest positive, set with𝑘
1



the largest possible, positive measure contained in . So we are looking because is the𝐸
0

𝑘
1

smallest positive integer and you are looking at here..So we are trying to exhaust as fast 1/𝑘
1

as possible.so we are looking for the largest possible measured set inside E naught.

So, now, you look at mu of is equal to, everything is finite. so subtractive propertyµ(𝐸
0
\𝐸

1
)

holds, and therefore, which is less than equal to minus , and that is ofµ(𝐸
0
\𝐸

1
)   µ(𝐸

0
) 1/𝑘

1

course, strictly less than 0. And of course, it is contained in the .𝐸
0
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And therefore, we have, apply proceeding procedure to because, this again, that𝐸
0
\𝐸

1

means, this cannot be a negative set so it will contain a set of positive measure..So let be𝑘
2

the smallest positive integer such that there exists contained in and .𝐸
2

𝐸
0
\𝐸

1
µ(𝐸

2
) ≥ 1/𝑘

2

And now we proceed inductively. Just now, you take and so on. So proceeding𝐸
0
\𝐸

1
∪ 𝐸

2

like this, proceeding in this way, for every positive integer i, there exists a measurable set ,𝐸
𝑖

, sorry, of positive measure contained in minus union k equals 1 to i minus 1µ(𝐸
𝑖
) ≥ 1/𝑘

𝑖
𝐸

0

. And let k i be the smallest positive integer such that there exists contained in minus𝐸
𝑘

𝐸
𝑖

𝐸
0

union k equals 1 to i minus 1 and mu of greater than or equal to 1 by .𝐸
𝑖

𝐸
𝑖

𝑘
𝑖

So, clearly are all disjoint because each time you are looking at something in the𝐸
𝑖

compliment, and therefore, E is are all clearly disjoint and you have sigma i equals 1 to



infinity, mu of is equal to mu of union i equals 1 to infinity . And this is of course,𝐸
𝑖

𝐸
𝑖

contained in , which has finite measure and therefore, you have that this is less than plus𝐸
0

infinity. So in particular this implies at goes to 0, that is tends to infinity. So this isµ(𝐸
𝑖
) 𝑘

𝑖

step 3.
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Step 4. measurements set, let . So then this implies it . If not, let𝐹 𝐹 ⊂ 𝐸
0
\

𝑖=1

∞

⋃ 𝐸
𝑖

µ(𝐹) ≤ 0

. Since, tends to infinity, you can always find some, how will be positivity. soµ(𝐹) ≥ 1/𝑘
𝑛

𝑘
𝑖

you can always find goes to 0, so however small this is, you can always find a like1/𝑘
𝑛

𝑘
𝑛

this.

Now, for all m greater or equal to n, you have F is contained in union minus union i equals𝐸
0

1 to infinity E I, which is contained in minus union k equals, i equals to 1 to m F i. And𝐸
0

then, it has positive measures and therefore, this implies that k m is less than equal to 𝑘
𝑛



because is greater than . But then, by definition it is like this. How we haveµ(𝐹
𝑛
) 1/𝑘

𝑛

chosen, or chose what, , is the smallest positive integer set such that there exists a1/𝑘
𝑚

subset of positive measure greater than .1/𝑘
𝑚

So, here this implies, but this is for all m greater than equal to n contradictions since k n again

tends to infinity. So this is not possible. And therefore, is less than equal to 0, that is inµ(𝐹 )

E naught minus union i equals 1 to infinity E i is a negative set. And it is disjoint from B, and

that again, is the beginning of step 2, is a contradiction because you cannot have a set like

this.

And consequently. so this implies that A is a positive set. If you call this , you have𝐹
0

µ(𝐹
0
)

is contained, is a subset, is less than every time we saw that and therefore, this is,µ(𝐸
0
)

which is strictly less than 0 and is joined from B and it is not possible. So that is the

conclusion. So this we have, this completes the proof.

Remark, Hahn Decomposition not unique. Let us see why it cannot be unique. So let

us take . So this is called Hahn Decomposition, breaking it up into a positive set𝑋 = 𝐴 ∪ 𝐵

and a negative set, and they are disjoint and that is called a Hahn. So if . is Hahn𝑋 = 𝐴 ∪ 𝐵

Decomposition, let N be a subset of B with measure of N equal to 0.

So let F be contained in N. So N is contained in B, F is contained in N, and N is contained

will B, so is less than or equal to 0. So, if is strictly negative, then mu of 0µ(𝐹) ≤ 0 µ(𝐹)

equals of N, which is equal to of N minus F. And that would mean N minus F,µ µ(𝐹+) µ(𝐹)

of N minus F strictly positive, but N minus F is contained in N contained in B and thatµ(𝐹)

is a contradiction, so it is not possible.

Therefore, for all F contained in N. Then A union N is a positive set and B minusµ(𝐹) = 0

N is a negative set. And check. And , and these are disjoint and𝑋 = 𝐴 ∪ 𝑁 ∪ 𝐵\𝑁

therefore, is another Hahn Decomposition. So you can take sets of measure 0 in these, in a

Hahn Decomposition and then put it either place and then produce new Hahn Decomposition.

And this is the only way you can do it, and that comes from the following proposition.
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Proposition: , measurable space and , signed measure. Let be𝐿𝑒𝑡 (𝑋, 𝑆) µ {𝐴
𝑖
, 𝐵

𝑖
}

𝑖=1
2

two Hahn Decompositions. Then, for every , you have . And𝐸 ∈ 𝑆 µ(𝐸 ∩ 𝐴
1
) = µ(𝐸 ∩ 𝐴

2
)

. So however you do it, it does not matter.µ(𝐸 ∩ 𝐵
1
) = µ(𝐸 ∩ 𝐵

2
)

Proof, Let and we have . And therefore, this implies that𝐸 ∈ 𝑆 𝐸 ∩ 𝐴
1
\𝐴

2
⊂ 𝐴

1

. But . And that is aµ(𝐸 ∩ 𝐴
1
\𝐴

2
) ≥ 0 𝐸 ∩ 𝐴

1
\𝐴

2
= 𝐸 ∩ 𝐴

1
∩ 𝐴

2
𝑐 = 𝐸 ∩ 𝐴

1
∩ 𝐵

2

negative set, and this implies that .µ(𝐸 ∩ 𝐴
1
\𝐴

2
) ≤ 0



So, . Soµ(𝐸 ∩ 𝐴
1
\𝐴

2
) = 0

µ(𝐸 ∩ (𝐴
1

∪ 𝐴
2
)) = µ(𝐸 ∩ 𝐴

2
) + µ(𝐸 ∩ (𝐴

1
\𝐴

2
)) = µ(𝐸 ∩ 𝐴

2
).

Similarly this = µ(𝐸 ∩ 𝐴
2
)

And therefore, they two are the same. So

µ(𝐸 ∩ 𝐴
1
) = µ(𝐸 ∩ 𝐴

2
) = µ(𝐸 ∩ (𝐴

1
∪ 𝐴

2
))

Similarly, . So if you have any Hahn Decomposition ,they willµ(𝐸 ∩ 𝐵
1
) = µ(𝐸 ∩ 𝐵

2
)

only differ by sets of measure 0.
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So, now you define, so Let , measurable space and , signed measure, and(𝑋, 𝑆) µ 𝑋 = 𝐴 ∪ 𝐵

is a Hahn Decomposition. Then define and withµ+(𝐸) = µ(𝐸 ∩ 𝐴) µ+(𝐸) =− µ(𝐸 ∩ 𝐵)

a minus sign, and for every E in S. So, well defined by previous proposition.

It does not depend on the Hahn Decomposition. Whatever Hahn Decomposition you take,

these numbers will be, will not change. Also, clearly, mu plus minus are non-negative and

they are measures, because you define it as and when you restrict this measure to a𝐸 ∩ 𝐴

particular set by intersection, it is also a new measure.
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And since takes values plus infinity or minus infinity only, only takes values plus infinityµ µ

or minus infinity, one of , is finite. Andµ+ µ−

.𝑋 = 𝐴 ∪ 𝐵 ⇒ µ = µ+ − µ−

Therefore, we have proved the following theorem. This is called the Jordan Decomposition.

Theorem (Jordan Decomposition): So , measurable space, signed measure, then(𝑋, 𝑆) µ

µ = µ+ − µ−

measures, at least one of them finite. If is finite, respectively sigma finite, then so are .µ µ+−

That is easy to see, because if is finite, then must both be finite, and if is sigmaµ µ+,  µ− µ

finite, it can witness a disjoint union of sets which are a finite measure. And the same thing

carries over to the mu plus and the mu minus.

So, we will continue with this next time. So this decomposition, is called theµ = µ+ − µ−

Jordan Decomposition of mu. So you have a Hahn Decomposition. In terms of the Hahn

Decomposition, you can define the Jordan Decomposition. And of course, though the Hahn

Decomposition is not unique, the Jordan Decomposition becomes unique.


