Measure and Integration
Professor S. Kesavan
Department of Mathematics
The Institute of Mathematical Sciences, Chennai
Lecture 58
Exercises
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Exercises:
So now, time for some exercises.

(1): give an example of a set X # @ and a monotone class 9 on X such that X empty set
belongs to P and P is not a o algebra. So, we saw in many cases, if you have a monotone
class with the often it, which is in algebra then generated by an algebra then it is the same as
the o algebra. So, we wanting a monotone class which is not a o algebra and so, solution. So,

letustake X = Nand ,9 = {$, X} U {An| n = 1, 2,3..} etc where An = {1, 2,3,.., n}.

So, this is not a o algebra, since, if n is bigger than m, we have An minus Am is equal to m

plus 1 up to n which does not belong to Mt and therefore, it is not closed under differences so,

this is not a o algebra. And it is a monotone class because if you take {F i} increasing in I,
then if X = E p we already have that union E ; equal to X belongs to 9. If X is not in equal to

any E ; for all i, then you have union E ; is Am where m is the max of the is because, yeah.



Similarly, if you have intersection E ; decreasing then the ® = E ; then the intersection E .
equal to @ otherwise if ® ¢ E ; then intersection E ; will be the minimum, will be Am, m

equals minimum, there will be a minimum in this case. You cannot have a super inf because
in this case, you have this. So, here we put, or X, it could be X also. Then m is the minimum.

So this is a monotone class and consequently, you have, it is not a ¢ algebra.
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(2), Let f and g integrable over R" and then show that
@: (f * D) = [ fx = g@»)dm, )
RN

Now, in this case f star g is integrable if f and g is integrable and h is integrable, so, the
convolution is defined. Similarly g * h is integrable and therefore, f * g * h is also

integrable. So everything is well defined. So, this is just a equation of Fubini’s theorem and

translation invariance. So (f * g)(x) = f f®glx — E)dmN(E) =(g* Hx)
RN

And then we have seen this x already when you make a translation in ]RN, then the integral
just behaves like the usual substitution law and therefore, this becomes f of z and g of x
minus z d m N z. And that is equal to (g * f)(x). We have seen that if you translate a

function and then integrate it just integrates over the translated domain. But here, we are

: . N o
integrating over R ', and therefore the translated domain is the same.



). (f * 9) * W(x) = fN(f * 9 (x — »h(y)dm, (y)

R

= [ | f(x =y = HgO@)dm, (H)dm ()

R'R"

Now [ [ If(x =y = Ollg®Ir()|dm (Hdm (y) < 0. We have checked it many
R'R"

times, translation invariance matters, and therefore Fubini applies.
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Fubini can be applied. So ((f * g) * h)(x) is equal to integral R". Now, I will bring out g

of t because it does not seem to, so I am going to integrate first with respect to y. So, you
have f(x-y) integral R" f(x-y-t)h(y) d m Ny d m N t. Now, you put X minus y minus t equal
to z. And then y equals x minus t minus z. And therefore, this becomes integral R" goft

: N : ..
integral over R ', same as we did for the commutativity.

So, x minus y minus t is f of z and then h of x minus t minus zd m N z d m N t. Once again
we apply Fubini, so, again Fubini. Integral R" fof z, | bring out, and then the integral over
RN h of x minus t minus z g of t, and then d m N t d m N z. Now, this integral here, so that is

equal integral over R" f of z g star h at x minus z d m N z. And that is now equal to
((f * g) * h)(x), because whetheritis g * h * f or f * g * h, it does not matter because

of the commutativity, we already have. So, that proves.
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(3):, the £, g integrable on R". Show that

A A

F*9 = fg.

This is one of the most important properties of the convolution and Fourier transform. These
are used very often in the 3D analysis, partial differential equations. So, you take the

convolution product and take the Fourier transform. Then it becomes the usual multiplication.

And so,



D@ = ™ * 90 dm ()

]RN

= [ & flx = )gG)dm, () dm, ()
R R

Again, [ e ™ This equal to 1 mod f of x minus y mod gy d m Ny d m N x is finite.
]RN

Again, this is usual, you have done it many times. And therefore, Fubini, so, Fubini implies f

star g hat psi equal to integral ]RN, g y comes out and then you have

fN e—zmx-zf (x — y)dm, (x)dm, (y) . And that is equal the integral R" g of y integral R"
R

e M £ of x minus ydmN x.

And then you put e power minus 2 2miy - §£d m N y. Now, again by translation in radians, x

minus y you can change it to some z if you like, and therefore, this will become nothing but
star f hat €. So, you can pull it out. So, that is equal to f hat f(§). And what is inside is

nothing but g(§). And therefore, you have this nice problem.
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So, now, let us, the next exercise is a generalization of the idea. When we do integration,

especially if you have a non-negative function. So, if I have a function say on 0 1 like this, f



is some function like this then integral f over this interval is nothing but the area under this

curve. So, it is the area of this set. So, we are going to generalize this notion in next exercise.

(4): Let (X, S) measurable space, f: X = R measurable, and non negative. You define

these

V() ={(xt) EXXR 0<t< fx)

So, it is, we are precisely defining this area, and we are including these two portions. And

V.f)={xt) e X XR 0=<t< f(x)}So, we are excluding the boundary.

(a):, f simple non negative then V*(f) , V (f) are measurable on X X R. We give

the usual product topology. So, here you have the Lebesgue, I mean the s and here you have
the Lebesgue measures. So, let us take f equals alpha times chi of E when alpha is greater or
equal to 0. Alpha is strictly positive because with 0, it is a 0 function and there is nothing for

you to do, and E belongs to S.

So, then V*(f) 1s nothing but, so, you can take, so, E complement singleton 0 union, because
if you take E complement, f is 0 and therefore, t will also be have to be forcibly 0, so,
therefore, you have this cross E cross 0 alpha. And then this is measurable rectangles, and
therefore, this is measurable.

So, this is a measurable rectangle, this is also measurable rectangle. And V _(f) is nothing but

E complement cross 0 union E cross 0 open alpha. And again, this is measurable. So, now, let

f non-zero f equals o alpha i chi of Ei, 1 equals 1 to n, alpha 1 positive and E ; in S, 1 less

than to i less than equal to n.
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Then V*( f) equal to intersection E l_ complement cross 0. This is where everything is 0, union

iequals 1 ton E , CTOss 0 alpha i. And then this is measurable again because it is a union of

measurable rectangles. And then V' _(f) is the same thing, except you have zero alpha here.

So this is also measurable.

(b), Let f, g benon negative, f(x) < g(x) for all x, then V*(f) c V*(g) and
V.(f) €V.(9).

Solution: So, let us take (x,t) € V*(f). So thismeans 0 < t < f(x) < g(x) and

therefore, (x, t) € V*(g). Similarly, V_(f) € V. (9g).
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(c): Let fnZ 0 and fan. Then {V*(fn)} TV.(f), and if fnif. Then

VN LV

So V. ( fn) increasing when fn increasing follows from V. Similarly, v (fn) decreasing when

fn decreases also follows from here.
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So, let us take (x,t) €U V*(fn). This means what? There exists an n such that 0 less than or

equal to t less than equal to f of x n. But that goes to f of x. So, this is strictly less. That means

(x,t) € V*(f). Now if (x,t) € V*( f), then you have that 0 less than equal to t strictly less
than f of x.

In place, there exists an n since fn, fn T f, therefore there exists n such that 0 less than equal

to t strictly less than fn(x), which is less than or equal to f of X. You can insert fn because
fn — f, and t is strictly less. And therefore, this implies that x belongs to V*(fn), which is

contained in union n equals 1 to infinity V' m equals to fn.

So, we have both in inclusions here, and therefore, you have union V (fn), n equals 1 to

infinity equals V*(f). Similarly, for (x,t), so, fn Lfif (xt) en V*(fn), so 0 less than or
equal to t less than equal to fn for all n, and this implies that O less than equal to t less than

equal to f of x.

So, this implies that x belongs to, (x,t) € V*( f). Conversely, (x, t) € V*( f). So, this means

0 less than or equal to t less than equal to f x, but f(x) < fn(x) for all n, and this implies.

And therefore, those two are equal. So, we have V (f) equals /', intersection.
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(d), f be non-negative measurable, then V*(f), V (f) are measurable. So up till

now, we are dealing with, just doing set theoretic arguments. So now we want to show that

these two are measurable. So, f is non-negative measure therefore there exists fn > 0 simple

andfn Vf.

Then V n, V of, sub star sorry fn measurable and {V*(fn)} increases to V*(f) and therefore,

this implies that V*(f) is measurable. Now, you let g n equals f of x plus 1 by n. Then g n
decreases to f. And we know that by preceding, and by preceding argument, V*(gn) is

measurable.



So, let (x,t) € V*(f). This implies 0 less than or equal to t less than or equal f of x, which is
strictly less than g n of x for all n. So this implies (x,t) €N V*(gn). And if (x,t) €N V*(gn)

, 1 equals 1 to infinity, then O less than or equal to t less than g n of x which is f of x plus 1 by

n.

And this implies 0 less than or equal t less than or equal f of x is equal to V. So this implies
(x,t) € V*( f). So therefore, we get V*(f) equals intersection n equals 1 to infinity N V*(gn).

And these are all measurable, implies measurable.
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(e): (X, S, p) o finite measure space and A = p X m,. Then

AV.() = V(O = J fan

So, this is, you can say, area under the curve because you have, we saw that picture. So if,
this is f, then this, without the boundary, is V_, with the boundary, it is V . And that lambda

measure is what you want. So, lambda is the product measure. And therefore, that gives you

area under the curve.

SoAW.(N) = [m, (0 (M )du) = [ G = f f



that is a measurable set in the product measure, so is equal to, by Fubini’s theorem,. What is
V. (f)? This equal to set of all (x, t), Since at 0 less than equal to x, t less than equal, strictly
less than f of x. And that is equal to, so V*(f)x, so, for any fixed x, so, this is nothing but the

interval [0, f(x)). Similarly, (V (£))" = [0, f()] .

So, m 1 of this interval, this is equal to integral over x, f of x d mu x. This is equal to integral

x fd mu. Similarly, )\(V* (f)) is the same thing. So,

AV () = J Feoduc) = I fdu

So, you see, we have, the way the measure, product measure is defined, just generalizes the
notion of area. So, we will stop with this. So, this chapter has ended. Next time, we will take
up a new chapter. These are called signed measures, where measures need not be necessarily

positive.



