Measure and Integration
Professor S. Kesavan
Department of Mathematics
The Institute of Mathematical Sciences, Chennai
Lecture 56
Integration of radial functions
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We will now look at integration of radian functions. So, when doing Riemann integration,

let us say in two dimensions, then you would have written, seen such

2T o

[ f(x,y)dxdy = [ [ f(rcos®, rsin®)rdrd6. So this is the change to polar
e 00

coordinates, so this is polar coordinates. So, x = rcos 0; y = rsin6.

Similarly,
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[ fx,y,2)dxdydz = [ [ [ f(rsin® cos @, r sin 8 sin @, r cos 8)r" sin 8 dr do de,
e 000

So, here you have the polar coordinates

x =rsinBcos®,y =rsindsing, z = rcos 0.

So, when you use polar coordinates you can change the integrals like this as you might have
seen when doing Riemann integration, double integrals, triple integrals and so on. Now, one
can do, justify most of these for Borel measurable functions and the Lebesgue measure
associated with the integration with Lebesgue measure. But as you go to n dimensions, these

formulae become more and more horrendous and difficult to write down.

Now, what we will see here is a very easy way to integrate radial functions. So, the definition

Definition: f: R" > R is radial if there exists f R" > R such that

fx) = £ (xD.
So, the function depends only |x|, namely here |x|=r in both the cases, so it depends only on
the r variable, the theta and other variables do not matter. So, such a function is called a radial

: . . . . N
function. And we would like to see how to integrate a radial function over R .

So, let B be the unit ball in R" and its measure so mN(BR) = RNmN(Bl) = ooNRN. So W, is
the area of the unit circle which is pi, w 3 is the volume of the unit ball in r by 3 in r 3 which is
4 by 3 pi etcetera. General value of W, we will see a little later. So, if R equal, if R is positive
then T(x) = Rx maps unit ball centre 0 to, onto a ball of radius R. And this is a linear
relationship and you know how.

Therefore mN(BR), SO BR is the ball of radius R centre 0, so this is nothing but you must, you

might we have seen already is the determinant of the map. Now, the map here is the diagonal

map R R R R R, so it is R" into the measure of the mN(BR) =R'm (Bl) = (oNRN . So, by
N

. : : N
translation, invariance of any ball, all balls of radius R have measure w, R
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So, now let E(O; R) = is the closed ball centre 0, radius R. And f: E(O; R) = Ris radial. So,
that means f(x) = f (x) for some f . So, now assume f :[0, R] - R, is continuous,
therefore it is also uniformly matrix. Now you take any partition of the interval [0 R].

So, that is equal to 0 equals r naught less than r 1 less than etcetera less than r n equals capital
R. So, partition of [0 R]. And you set Al, = {x € ]RN; ro, S |x| < rl,}. So, there you have

that B(0; R) equals union i equals 1 ton Al, disjoint union.

Now, if you take T, power N minus T minus 1 power N, then this is equal to N EL_ power n
minus 1 T minus T minus 1. This is the mean value theorem. Difference of the value of the

function R power N at two points is the value of the derivative at some intermediary point, so

you have 0, sorry T Ei belonging to T, minus 1 r. So, this is the mean value theorem.



(Refer Slide Time: 08:42)

3z ¢ (":,.ﬁn\
Chgne  ge B o M\ 12igw

for = TN, - 36T, TueFo
LS
A(.®)= w(u;-y:_’\
T4 en
‘}_ el 140 ¢ ~ \q,t‘\.- %E'-.\\ =\ ?{:(m\— "i(\\&\\ - )?(m\_ ?@l
r{: wte G =)y %z..-.,\zw,%?‘rn of.  DEV<S
=5 \;m- §P(1)| <&,

= £D_~,-§ wed an e

L

So, choose y in Al, such that mod y i equal to X, 1. So, 1 less than equal to i less than equal to
n, we do this for. Now, define the function f of p equal to sigma i equals 1 to n of fof y i chi

times Ai, that is also equal to sigma i equals 1 to n f~(xl_) chi of Ai, since fof y iis f of

mod y i which is f~(xi) .

So, now you let delta P to be the max of T, minus T, minus 1, 1 less equal to i less than equal

to n. If x belongs to Ai then what is 1 less equal to i less than equal to n, then you have mod f

x minus f of f p of x, this equal to mod of f of mod x minus f of mod y i is equal to mod

f~ of mod x minus f ofxi 1.

Now, f~ is uniformly continuous because it is continuous on [0, R] so this implies given
epsilon positive, there exists delta positive such that delta P less than delta implies mod f x

minus f P of x which is f of x minus f P of x is nothing but f x minus f of Ei mod X minus Ei

will be less than delta P which is less than small delta and therefore this will be less than

epsilon. Therefore, you have f P converges to f uniformly as delta P goes to 0.
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So, now you have if you have a set of finite measure, we have done this exercise or it was the
assignment, if you have a set of finite measure then of course if you have uniform
convergence then the integral also will converge. So, limit delta P tending to 0 of integral

B(0; R) of fP dmN will be equal to integral B(0; R) offdmN.

So, let us take what is integral f p d m N. That is, since it is a simple function this is equal to

sigma 1 equals 1 to n f of Ei into measure m N of Ai that is equal to sigma i equals 1 to N f of
X, I, what is the measure of Ai? Ai is as annular region and therefore that is equal to w v SO,

power N minus T minus 1 power N.

And that, we know, is sigma i equals 1 to N by the mean value theorem f ~(xi) i, f ~(xi) i

N . . - . N-1 .
W, N R minus 1, sorry Ei to the N minus 1, this is what we saw earlier, N Ei T, minus 1
minus . So, f is continuous. That means this converges, this is exactly a Riemann sum so this
converges to integral 0 to R of f (r), r N W, T pOWer n, sorry, N W, T power N minus 1,

Riemann sum.

R
So, [ f dmN =[f i drNooN. If f is non negative and integrable, then of course
B(0,R) 0

we can extend this by monotone convergence theorem, dominated convergence theorem, et

N . N . .
cetera to all of R also. So, extends to integral on R of f dmN under suitable conditions.



So, for instance f non-negative then you take R tending to infinity then by monotone
convergence theorem we

H{Nf dm = o{0]‘~(7”) Al dr o, .

So, we have such formula. We will see a nice application of this.



