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So, we were looking at the product measure. So, we have finite(𝑋, 𝑆, µ),  (𝑌, 𝑇, λ) σ

measure spaces then we have is the measure defined on, so the productµ × λ 𝑄 ∈ 𝑆 × 𝑇 σ

algebra, then this was defined as

.(µ × λ)(𝑄) =
𝑋
∫ λ(𝑄

𝑥
) 𝑑µ =

𝑌
∫ µ(𝑄𝑦 ) 𝑑λ

So, this is how we define the product measure and we saw that on our two for instance,

is not complete and therefore, is not what we would have assumed is the𝑚
1

× 𝑚
2

𝑚
1

× 𝑚
2

measure. So, what is the relationship between the different algebras and the correspondingσ

measures which we have on higher dimensional spaces?

So, we sketch the proof argument below. So, we will say let and then we consider𝑙 = 𝑘 + 𝑛

then you have equals Borel sets in , equals Borel sets in andℝ𝑙 = ℝ𝑘 × ℝ𝑛 𝐵𝑙 ℝ𝑙 𝐵
𝑘

ℝ𝑘 𝐵
𝑛

equals Borel sets in . Similarly, you have equals Lebesgue measurable sets in andℝ𝑛 𝐿
𝑙

ℝ𝑙

then equals Lebesgue measurable sets in and equals Lebesgue measurable sets in𝐿
𝑘

ℝ𝑘 𝐿
𝑛

ℝ𝑛



So, now, given any open set in equals countable disjoint union of half open boxes, weℝ𝑙

have seen this before any open set can be written as a countable disjoint union of half open

boxes therefore, all since boxes are obviously, they are measurement rectangles and therefore,

belong to and therefore, open sets are also in, so open sets belong to and this𝐿
𝑘

× 𝐿
𝑛

𝐿
𝑘

× 𝐿
𝑛

implies Borel sets is contained in B .𝐵
𝑙

𝐿
𝑘

× 𝐿
𝑛
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Now, if E is in Lebesgue measurable that is . So, now, you can approximate E fromℝ𝑘 𝐸 ∈ 𝐿
𝑘

above by d delta set and from below by an F set these are all the characterizations of thisσ

thing. Now, then this means that is Lebesgue measurable in . Why is that?𝐸 × ℝ ℝ𝑙

Because you have will be what if you take g delta set then that will be a countable𝐸 × ℝ

union of open set.

An open set cross is again an open set therefore, it is Lebesgue measurable in andℝ𝑛 ℝ𝑙

therefore, countable union of open sets is also the big measurable in and then F similarlyℝ𝑙 σ

for closed sets, intersection of closed sets et cetera is Lebesgue measurable and these twoℝ𝑛

closing on E and Lebesgue measurable is a completion and therefore, this implies that E cross

is, similarly, , , implies belongs to .ℝ𝑛 𝐹 ∈ 𝐿
𝑙

𝐿
𝑛

ℝ𝑘 × 𝐹 𝐿
𝑛



So, the intersection, so this implies the intersection of these two which is E cross F belongs to

. So, this means that all measurable rectangles belong to and this implies that is𝐿
𝑙

𝐿
𝑙

𝐿
𝑘

× 𝐿
𝑙

contained in . Therefore, you have is contained in the which is contained in .𝐿
𝑙

𝐵
𝑙

𝐿
𝑘

× 𝐿
𝑙

𝐿
𝑙
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Now, and agree on boxes because it is whatever definition you give the because𝑚
𝑙

𝑚
𝑘

× 𝑚
𝑛

it is measurable rectangles boxes are measurable rectangles. So, the measure is just the

product of the measures and then the same for the boxes in ml also. So, these agree on boxes

and since every open set is countable disjoint union of boxes therefore, agree on open sets

and therefore, this agree on Borel sets because this is translation both are, since both are

translation invariant and finite on compact sets, both these are very easy to check.

And therefore, they agree on open sets, they are the translation within finite on compact sets

then we are shown that the it is essentially the Lebesgue measure which is the thing, so ml is

on Borel sets. So, they agree on Borel sets.

So, now, if then this implies Q belongs to . So, it is Lebesgue measurable. So,𝑄 ∈ 𝐿
𝑘

× 𝐿
𝑛

𝐿
𝑙

there exists , in Borel sets such that ml of equal to 0 and contained in Q𝑃
1

𝑃
2

𝐵
𝑙

𝑃
2
\𝑃

1
𝑃

1

contained in because, again the proposition about Lebesgue measurability. Now,𝑃
2

and this is Borel set and therefore, that is equal to ml𝑚
𝑘

× 𝑚
𝑛
(𝑄\𝑃

1
) ≤ 𝑚

𝑘
× 𝑚

𝑛
(𝑃

2
\𝑃

1
)

of and that is equal to 0.𝑃
2
\𝑃

1
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So, that implies that equals ( which is which is equal to𝑚
𝑘

× 𝑚
𝑛
(𝑄) 𝑚

𝑘
× 𝑚

𝑛
𝑃

1
) 𝑚

𝑙
(𝑃

1
)

, and this implies that and agree on as well. And therefore, this𝑚
𝑙
(𝑄) 𝑚

𝑘
× 𝑚

𝑙
𝑚

𝑙
𝐿

𝑘
× 𝐿

𝑛

implies that, ml is the completion of . So, the Lebesgue measure in in a product𝑚
𝑘

× 𝑚
𝑛

space is the completion of the product of the Lebesgue measure which for many of the

subspaces which you want to do, so, this is the relationship and we also have that , is𝐵
𝑘

𝐵
𝑙

contain cross and we have this relation here sorry, and we have this relationship𝐿
𝑘

× 𝐿
𝑛

𝐿
𝑙

𝐿
𝑛

here.



And therefore, it works. So, now, we are going to prove one of the most important theorems

again in the course. So, this is called Fubini’s Theorem, it talks about integrability on the

product space, so theorem Fubini

Theorem: Let finite measure spaces. F an extended real valued(𝑋, 𝑆, µ),  (𝑌, 𝑇, λ) σ

function defined on and which is measurable. It better be measurable in the𝑋 × 𝑌 𝑆 × 𝑇

product otherwise we are not talking about it.

So, a let f be non negative. Define for ,𝑥 ∈ 𝑋,  𝑦 ∈ 𝑌

φ(𝑥) =
𝑌
∫ 𝑓

𝑥
 𝑑λ  𝑎𝑛𝑑 ψ(𝑦) =

𝑋
∫ 𝑓𝑦𝑑µ

remember these are the sections for this a function of y and this is a function of x and𝑓𝑦

therefore, you can integrate it on these spaces.
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Then is S measurable, is T measurable and integral over over X is equal to integralφ ψ φ𝑑µ

f over and that is equal to the integral over Y of . So, this is the𝑑(µ × λ) 𝑋 × 𝑌 ψ 𝑑λ

important conclusion of Fubini’s theorem. So, b let

, if is S integrable,φ*(𝑥) =
𝑌
∫ |𝑓|

𝑥
𝑑λ φ*

integrable over X then f is integrable over with respect to the measure and for𝑋 × 𝑌 µ × λ

almost every and almost every fx is S measurable, no sorry T measurable, fy𝑥 ∈ 𝑋,  𝑦 ∈ 𝑌

is S measurable and star holds. c, f integrable over with respect to then that𝑋 × 𝑌 µ × λ

should be stated here then for almost every , fx is T measurable, fy is S𝑥 ∈ 𝑋,  𝑦 ∈ 𝑌



measurable both are integrable over the respective spaces with respect to the respective

measures and star holds.

So, let us look at this theorem a bit. So, first one says that if you have a non negative

function, then you just do do not worry about anything star is true, all of them may be

infinity, that is possible, but they are if one is infinity, everything is infinity one is finite, all

the three are finite and they have to be equal that is, so, for non negative functions, no

worries.

The second one tells you a condition when the function is integrable over the product space.

So, if you take mod f and it is x section and y and that is integrable over X then the original

function is integrable similarly, it is enough to check you can also do it for y you can take the

mod of f over y if that is integral for x and then then also you can have the integrability.

And once you have integrability of the function of the product space, then the first part it is as

though like it is in the case of non negative functions namely the sections are all measurable

and integrable and you can write the general star formula which is the integral exactly.
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So, let us give the proof of this,

Proof: (a) of non negative and therefore, , are well defined. For non𝑓
𝑥
, 𝑓𝑦 φ ψ

negative functions, you can always define the integral. Now, by definition of product measure

star is exactly the conclusion of the previous theorem when , because, this𝑓 = χ
𝑄

𝑄 ∈ 𝑆 × 𝑇



is exactly what we did because what was it conclusion integral of over equals𝑑(𝑄
𝑥
) 𝑑µ 𝑋

integral over y and that is equal to which is nothing but integral overµ(𝑄𝑦)𝑑λ µ × λ(𝑄)

of chi Q.𝑋 × 𝑌

So, this is exactly the theorem which we proved. So, we have proved it for characteristic

functions then this implies by linearity for proof for simple functions, so, we are using the

trick prove it for characteristic function, prove it for simple functions then use a limit theorem

to prove it for any non negative function.

Now, f non negative function measurable in then you have , increases to f. Then𝑆 × 𝑇 𝑓
𝑛

𝑓
𝑛

equals integral Y , of y equals the integral over X . Then,φ
𝑛
(𝑥) 𝑓

𝑛
(𝑥) 𝑑λ ψ

𝑛
𝑓

𝑛
(𝑦) 𝑑µ

because these are simple functions and these increases to and will increase to .φ
𝑛

φ ψ
𝑛

ψ

And therefore, result follows from the Monotone Convergence Theorem.
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Because you have that integral on equals integral , over Y𝑓
𝑛

𝑋 × 𝑌 𝑓
𝑛

𝑑(µ × λ) ψ
𝑛

𝑑λ

equals integral over X and now, you just have to pass through the limit and then youφ
𝑛

𝑑µ

will get this, so this proves this. b, so apply a to mod f, so we get the integral mod f𝑋 × 𝑌

is equal to integral over X, and that we know is finite and therefore, you𝑑(µ × λ) φ* 𝑑µ

have that f is integral.

c, so, now, you write then f integrable implies integrable and equal to 0,𝑓 = 𝑓+ − 𝑓− 𝑓+ 𝑓−

integrable and that is equal to 0, then you define plus minus x is equal to the integral Yφ 𝑓+

minus x and y equals the integral over X, minus y .𝑑λ ψ+− 𝑓+ 𝑑µ

Then what do you know? You know that integral over is equal to𝑓+ 𝑑(µ × λ) 𝑋 × 𝑌

integral over Y equals integral over X. And similarly, integral over x isψ+ 𝑑λ φ+ 𝑑µ φ− 𝑑µ

equal to the integral , equals integral Y, . And all are finite, all𝑋 × 𝑌 𝑓− 𝑑(µ × λ) ψ− 𝑑λ

finite because these things are integrable.
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And therefore, they are finite and therefore, you can subtract and then you have isφ+φ−

exactly so this, so this will give you, so this imply star just subtract back you will get𝑓+, 𝑓−

some. So,

Remark: (1) If all integrals in star could be finite, infinite if even one is finite𝑓 ≥ 0

all are finite and equal.

(2)Then, (b) can also be stated let integrable on Y.ψ*(𝑦) = ∫ |𝑓|𝑦𝑑µ

Then, is integrable on . So, you can check any one of the three.𝑓 𝑋 × 𝑌

(3) So, what is star? Star can be written as an expanded form integral

𝑋×𝑌
∫ 𝑓𝑑(µ × λ) =

𝑋
∫

𝑌
∫ 𝑓(𝑥, 𝑦)𝑑λ(𝑦)𝑑µ(𝑥) =

𝑌
∫

𝑋
∫ 𝑓(𝑥, 𝑦)𝑑µ(𝑥)𝑑λ(𝑦).

The first integral will give you the or the definition and then next integral will give youφ ψ

the integral or the integral definition. So, this is how you expand. So, essentially whatφ ψ

we are doing, we used to do in double integrals in Riemann integral, Riemann integration

namely the order of integration is unimportant that is what it says and that is true if f is

integrable on the product space that is a Fubini’s Theorem. So, we will see several examples

of this in the subsequent lectures.


