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Today we will discuss the product measures so, we have is finite(𝑋, 𝑆, µ),  (𝑌, 𝑇, λ)  σ

measure spaces. So, what is finite? This means and , isσ 𝑋 =
𝑖=1

∞

⋃ 𝑋
𝑖
,  𝑌 =

𝑗=1

∞

⋃ 𝑌
𝑗

µ(𝑋
𝑖
) < ∞

finite for all i, and is finite for all j.λ(𝑌
𝑖
) < ∞

This is what we mean by depends a countable union of sets of finite measure and youσ φ

know what is this is equal to algebra generated by elementary sets and we want to𝑆 × 𝑇 σ

define now a measure on this algebra.σ

So, we start with the following theorem.

Theorem: Let , finite measure spaces. Let , that means it(𝑋, 𝑆, µ),  (𝑌, 𝑇, λ) σ 𝑄 ∈ 𝑆 × 𝑇

is measurable in the product algebra for defineσ 𝑥 ∈ 𝑋,  𝑦 ∈ 𝑌

φ(𝑥) = λ(𝑄
𝑥
)  𝑎𝑛𝑑 ψ(𝑦) = µ(𝑄𝑦).

So, these are the sections.

Then is S-measurable, is T-measurable further, there is the most important thing youφ ψ

have

.
𝑋
∫ φ  𝑑µ =

𝑌
∫ ψ𝑑λ



Proof: Let be the collection of all sets in , such that star is true, this is star and𝑈 𝑆 × 𝑇

therefore, you take all these. So, our aim is to show that to show . That will be 𝑈 𝑈 = 𝑆 × 𝑇

that will be the theorem.

So, now, we will do it in various steps. So,

Step 1: let measurable rectangle, then that means each set is measurable in the𝑄 = 𝐴 × 𝐵

corresponding space and you have the product. Then what is , you remember theφ(𝑥) φ(𝑥)

φ (𝑥) = λ(𝐵)χ
𝐴

,   ψ(𝑦) = µ(𝐴)χ
𝐵

.  

So, both of them are so this is S measurable and this T measurable. And what is

.
𝑋
∫ φ  𝑑µ =

𝑌
∫ ψ𝑑λ

So, we have therefore, this implies that every measurable rectangle is in .𝑈

Step 2, , increasing family of sets in and you set Q equal to Union , i equals 1{𝑄
𝑖
}

𝑖=1
∞ 𝑈 𝑄

𝑖

to infinity, question is or not. So, is nothing but and Psi i y equals𝑄 ∈ 𝑈 φ
𝑖
(𝑥) λ((𝑄

𝑖
)

𝑥
)

, , .µ((𝑄
𝑖
) 𝑦) 𝑥 ∈ 𝑋 𝑦 ∈ 𝑌

Then increases to Q of x there is no doubt about that and similarly, increases to(𝑄
𝑖
)

𝑥
(𝑄

𝑖
)𝑦

Q of y and for each of these since are all in , so, you have integral , i equals𝑄
𝑖

𝑈 φ
𝑖
(𝑥) φ

𝑖
𝑑µ

integral d , but then increases to and psi increases to psi. is what and thisφ
𝑖

λ φ φ φ λ(𝑄
𝑥
)

is equal to o.µ( 𝑄𝑦)

So, by monotone convergence theorem you have a sequence of non negative function

increasing. So, integral x of is equal to integral of psi and therefore, R is true andφ 𝑑µ 𝑑λ

this implies that . So, if you have an increasing sequence in then this union is also in𝑄 ∈ 𝑈 𝑈

.𝑈
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Step 3 in disjoint, then this implies this is obvious, so, that union{𝑄
𝑖
}

𝑖=1
𝑛 𝑈 {𝑄

𝑖
}

𝑖=1
𝑛

belongs to . So, this is obvious because some of the integrals is the integral of the sum and𝑈

therefore, you have nothing to leave it through. So, these are all disjoint. So, in fact ),µ((𝑄
𝑖
)

𝑥

is n , is so, , sorry is i equals 1 to n and then𝑈 σ µ((𝑄
𝑖
)

𝑥
) µ(𝑄

𝑥
) µ(𝑄

𝑥
) λ σ

𝑖
λ((𝑄

𝑖
)

𝑥
) µ(𝑄𝑦 )

equals i equals 1 to n because they are disjoint, and therefore, now result isσ µ((𝑄
𝑖
) 𝑦)

obvious so, now, result is obvious.

So, then therefore, if you have in disjoint then R n equals union i equals 1 to n,{𝑄
𝑖
}

𝑖=1
∞ 𝑈

belongs to by what we just saw and therefore, Q union , i equals 1 to n,{𝑄
𝑖
}

𝑖=1
∞ 𝑈 𝑄

𝑖
𝑄

𝑖

infinity equals union i n equals 1 to infinity of R n and this increases to Q and by step 2𝑄
𝑖

you have elements in , which I increase into Q, we know that . So, if you have a𝑈 𝑄 ∈ 𝑈

countable disjoint union of sets in , where union is also in .𝑈 𝑈

So, step 4, A in S, B in T, finite (B) finite and contains Q 1 contains Q2 etcetra,µ(𝐴) λ 𝐴 × 𝐵

in U then intersection i equals 1 to infinity, belongs to . So, exactly as in step 2 use𝑄
𝑖

𝑄
𝑖

𝑈

dominated convergence theorem instead of monotone convergence theorem, because you

have that is where you put this finiteness condition on , you just have to the repeat the𝐴 × 𝐵

proof and you will see that by dominated convergence theorem you have this. Now, since this

is step what 4.
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Step 5, you have now and , is finite for all i, and𝑋 =
𝑖=1

∞

⋃ 𝑋
𝑖
,  𝑌 =

𝑗=1

∞

⋃ 𝑌
𝑗

µ(𝑋
𝑖
) < ∞

is finite for all j, because and are finite measure spaces and now, you takeλ(𝑌
𝑖
) < ∞ 𝑋 𝑌 σ

Q, so, now, you define M, to be set of all Q and such that belongs to for all m,𝑆 × 𝑇 𝑄
𝑚𝑛

𝑈

n. What is , is equal to Q intersect .𝑄
𝑚𝑛

𝑄
𝑚𝑛

𝑋
𝑛

× 𝑌
𝑚

So, now, step 2 and step 4 implies M is a monotone class, step 2 says any increasing in Q is in

, any increasing set family the union is in Q, . And then the second 1 decreasing means it𝑈 𝑈

is all contained in a finite set and that is in ’s are all contained in which are𝑄
𝑚𝑛

𝑋
𝑛

× 𝑌
𝑚



finite measure and therefore, by step 4 the intersection will also be in U. Therefore, by step 1,

2 and 4, the M is a monotone class.

Now, step 1 implies all measurable rectangles in M and step 3 implies elementary sets in M

therefore, you have that M is a monotone class containing elementary sets but what is a S of

elementary sets this is and M is of course is contained in because you are𝑆 × 𝑇 𝑆 × 𝑇

taking all elements in for which something is true and therefore, an M of E equals S of𝑆 × 𝑇

E. This we also know by earlier proposition which we prove and therefore, this implies that

M equals .𝑆 × 𝑇

Step 6: If . So, by step 5, , which is Q intersection belongs𝑄 ∈ 𝑆 × 𝑇 𝑄
𝑚𝑛

𝑋
𝑛

× 𝑌
𝑚

∈ 𝑀,

to for all m, n and Q is nothing but the disjoint union M equals 1 to infinity. Union n equals𝑈

1 to infinity, Q nm and this is a disjoint union therefore, the implies by step 3. So, this𝑄 ∈ 𝑈

implies that is same as . So, this proves the entire Theorem.𝑈 𝑆 × 𝑇
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Definition: , finite measure spaces the product measure(𝑋, 𝑆, µ),  (𝑌, 𝑇, λ) σ

defined on ,µ × λ 𝑆 × 𝑇

µ × λ(𝑄) =
𝑋
∫ λ(𝑄

𝑥
)𝑑µ(𝑥) =

𝑌
∫ µ(𝑄𝑦)𝑑λ(𝑦).

So, this it is easy to check it is a measure because there all you have to do is non negative and

you only have to check countablity which is immediate because you are defining it in terms

of the integral and disjoint sets the integrals non negative functions there is no problems. So,

this is obviously measure. So, check that this is a measure, it is a very simple checking to do

and then the. So, this is how we define the product measure on the product algebra.σ



So, we have to, we that is why we need to do this work. So, now example

Example: Let us take on . We have 3 algebras we have the Borelℝ2 = ℝ × ℝ ℝ σ σ

algebra, we have the Lebesgue algebra and we also have which is the productσ 𝐿
1

× 𝐿
1

σ

algebra, Now, the question is, is are these how are these related?

Now so, clearly since all open sets, you can write them in terms of product of open sets here

each thing and open sets are in the corresponding space they are all measurable rectangles

and therefore, open sets contained in and this implies Borel, this contained in𝐿
1

× 𝐿
1

. Now, let us take , equals set of all x, 0. and this is as a subset of is𝐿
1

× 𝐿
1

ℝ ℝ 𝑥 ∈ ℝ ℝ

contained in this equal to the Union over n belonging to Z of n, n plus 1, cross 0.ℝ2

Now, you take non measurable then if you take , because the𝐸 ⊂ [0, 1] 𝐸 × {0} ∉ 𝐿
1

× 𝐿
1

section of the 0 section will be E and that is not in , that is not a measurable rectangle and𝐿
1

therefore, this is not in , but and you know that𝐿
1

𝐸 × {0} ⊂ [0, 1] × {0} 𝑚
2
([0, 1] × {0})

we have done this computation already this is 0 and by the whatever we have done now for

the product measure this also 𝑚
1

× 𝑚
1
([0, 1] × {0}).

So, this implies since is complete the Lebesgue measure is complete and this implies that𝑚
2

E cross 0 belongs to , therefore, is not equal to , this is not complete, not𝐿
2

𝐿
1

× 𝐿
1

𝐿
2

complete and this is complete, it is not complete we have just now seen you have a set whose

product measures is 0, but it has a subset which is not measurable and therefore, this so, this

is so, we have to be careful the product measure is not the lebesgue measure in the highest

base then what is it how are they all related? That we will see next step.


