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So, now we will start a new topic, this is Product spaces. So, let us take and(𝑋, 𝑆, µ)

measure spaces. So, we want to define a algebra and measure on , which is(𝑌, 𝑇, λ) σ 𝑋 × 𝑌

compatible with the structures on and and also we want to relate the process of𝑋 𝑌

integration on with the process of integration on and on .𝑋 × 𝑌 𝑋 𝑌

So, our first aim of course, is to study the algebra which is there and so, we will do that toσ

start with, then we will have to look at measurable functions and then finally, integration. So,

let so, definition a measurable rectangle is a subset of of the form ,𝑋 × 𝑌 𝐴 × 𝐵

, an elementary set is a finite disjoint union of measurable rectangles. The𝐴 ∈ 𝑆,  𝐵 ∈ 𝑇 σ

algebra generated by elementary sets is denoted so is a algebra on𝑆 × 𝑇, 𝑆 × 𝑇 σ 𝑋 × 𝑌

and it is generated by the elementary sets, the elementary sets is the, finite disjoint unions of

measurable rectangles, which are just products of sets taken from the 2 individual algebras.σ

Definition: non-empty of course, always non-empty so, we do not have to say this𝑋, 𝑌

again, E contain in and . Then, we say the x-section of and y in Y denoted𝑋 × 𝑌 𝑥 ∈ 𝑋 𝐸

.𝐸
𝑥

= {𝑦 ∈ 𝑌 | (𝑥, 𝑦) ∈ 𝐸} ⊂ 𝑌



So, this is a subset of Y remember. Similarly, the y-section of denoted𝐸

.𝐸𝑦 = {𝑥 ∈ 𝑋 | (𝑥, 𝑦) ∈ 𝐸} ⊂ 𝑌

and this of course, is contained in .𝑋
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Proposition: So, , measurable spaces . The algebra and(𝑋, 𝑆),  (𝑌, 𝑇) 𝐸 ⊂ 𝑆 × 𝑇 σ

then , we have .𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈ 𝑋,  𝑦 ∈ 𝑌 𝐸
𝑥

∈ 𝑇,  𝐸𝑦 ∈ 𝑆

So, this is a test of measurability if if this does not happen suppose you have a set E whose x-

section does not belong to for some x or for y-section does not belong to for some y, then𝑇 𝑆

the set is not measurable because if it is an both of these must happen.𝑆 × 𝑇,

So, this is just a test of measurability so proof. So, let U equals be the collection of all subsets

E in such that , following the . So, now, we want to see what kind of set𝑋 × 𝑌 𝐸
𝑥

∈ 𝑇 𝑥 ∈ 𝑋

this U is. So, if you have , measurable rectangle then, what is ?𝐴 × 𝐵 𝐸 = 𝐴 × 𝐵 𝐸
𝑥

𝐸
𝑥

= 𝐵

, if x belongs to A and will be the empty set if x is not in A because .𝐸 = 𝐴 × 𝐵

If x is not in A then for no y, x y will be in the this. Similarly, if x is in A then all of y anyway

in B will be in E and therefore, you have E x is this and therefore, this of course, belongs to 𝑇

, therefore any measurable rectangle belongs to U. Now, in particular it says belongs𝑋 × 𝑌

to U. Now, if E is contained in and x is in X, then what is complement the set of all𝑋 × 𝑌 𝐸
𝑥

y in Y, such that , y is not in E x that means and this is nothing but .(𝑥, 𝑦) ∉ 𝐸 (𝑥, 𝑦) ∉ 𝐸 𝐸
𝑥

𝑐

So, if E belongs to U, then will belong to E implies, , implies , and𝐸
𝑥

𝐸
𝑥

𝑐 ∈ 𝑇 𝐸
𝑥

𝑐 ∈ 𝑇

therefore, this implies E complement belongs to U.



Similarly, , with , then is nothing but union i in I, E x, E ix, and all this𝐸 =∪ 𝐸
𝑖

𝐸
𝑖

∈ 𝑈 𝐸
𝑥

will belong to T, because each of them is in U and therefore, you have that E belongs to U.

Therefore, U is closed under countable unions and complementation it contains 𝑋 × 𝑌

therefore, U is a algebra containing measurable rectangles.σ

If it is a algebra containing measurable rectangles is going to contain all the elementaryσ

sets, implies U is a algebra containing elementary sets and so, U contains . So, everyσ 𝑆 × 𝑇

element in is in U, that means . Similarly, so, this implies for every E in𝑆 × 𝑇 𝐸
𝑥

∈ 𝑇 𝑆 × 𝑇

for every , you have .𝑥 ∈ 𝑋 𝐸
𝑥

∈ 𝑇
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So, similarly we can show for every , for every y in Y, you have . So, that𝐸 ∈ 𝑆 × 𝑇 𝐸𝑦 ∈ 𝑆

completes the proof of that thing. So, now, we have seen rings, we have seen algebras, we

have seen algebra and so on. Now, we are going to define 1 more collection of subsets of aσ

given set x.

Definition: Let is a non-empty monotone class, , is a collection of𝑋 ≠ Φ 𝑀 ⊂ 𝑋

subsets of closed under increasing unions and decreasing intersections.𝑋

What does that mean? That is , for all i, for all i, for all i.𝐴
𝑖

⊂ 𝐴
𝑖+1

𝐵
𝑖

⊂ 𝐵
𝑖+1

𝐴
𝑖
, 𝐵

𝑖
∈ 𝑀

Implies ; . Increasing countable closed and increasing∪ 𝐴
𝑖

∈ 𝑀 𝑎𝑛𝑑 ∩ 𝐴
𝑖

∈ 𝑀 𝐵
𝑖

∈ 𝑀

countable unions and decreasing countable intersections. Such a set is called monotone class.
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Remark: trivially is a monotone class, any algebra or ring is a monotone𝐵
𝑥

σ σ

class. So, if it is collection of subsets of x then P(x) is a monotone class which contains .𝐴 𝐴

Now, intersection of monotone classes, it is a monotone class that is easy to see. Therefore,

there exists the smallest monotone class containing , and this is called and this is also𝐴 𝑀(𝐴)

called monotone class generated by . So, given any collection you also have this.𝐴
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Lemma: non-empty set and monotone class in on , let be contained in .𝑋 𝑀 𝑋 𝑃 𝑋

Define

𝑈(𝑃) = 𝑄 ∈ 𝑋:  𝑃 ∪ 𝑄,  𝑃\𝑄,  𝑄\𝑃 ∈ 𝑀{ }.

Then is a monotone class.𝑈(𝑃)

Proof: Let us take , increasing sequence in , then is{𝑄
𝑖
}

𝑖=1
∞ 𝑈(𝑃) 𝑃 =

𝑖=1

∞

⋃ 𝑄
𝑖

increasing in and equals 1 to infinity is also increasing and in .𝑀 𝑄
𝑖
\𝑃

𝑖
𝑀



And since is a monotone class this implies P union, union , i equals 1 to infinity, which𝑀 𝑄
𝑖

is union P union , equals 1 to infinity belongs to M and similarly, union , i equals 1 to𝑄
𝑖

𝑄
𝑖

infinity minus P is equal to Union i equals 1 to infinity minus P and this is increasing and𝑄
𝑖

therefore, this again in .𝑀

Now P minus , is decreasing in M and P minus union , i equals 1 to infinity is nothing𝑄
𝑖

𝑄
𝑖

but intersection P minus , i equals 1 to infinity this is a decreasing thing and therefore, this𝑄
𝑖

also belongs to M. So, this implies that union belongs to U. Similarly, if is decreasing in𝑄
𝑖

𝑄
𝑖

then intersection i equals 1 to infinity of is also in , therefore, is a𝑈(𝑃) 𝑄
𝑖

𝑈(𝑃) 𝑈(𝑃)

monotone class. Same type of proof elementary set theoretic arguments.

Lemma: Let and algebra of subsets of , then , this is nothing but the𝑋 ≠ Φ 𝑅 𝑋 𝑀(𝑅)

smallest monotone class containing , this smaller ring containing of R, so,𝑅 𝑀(𝑅) = 𝑆(𝑅), σ

monotone class and the ring generated by an algebra are one and the same, they are not 2σ

different objects.

Proof: Let , now if Q belongs to , then , all belong to𝑃 ∈ 𝑅 𝑅 𝑃 ∪ 𝑄 𝑃\𝑄, 𝑄\𝑃 𝑅

because is an algebra and this implies that , all belong to , because if they𝑅 𝑄\𝑃,  𝑃\𝑄 𝑀(𝑅)

belong to R they belong to , because is bigger.𝑀(𝑅) 𝑀(𝑅)

And therefore, this means that U have P. This means, R is contained in . Because for𝑈(𝑃)

every these 3 have and R is contained in . And if U have P is defined as in the𝑄 ∈ 𝑅 𝑈(𝑃)

previous lemma defined with respect to as in the previous lemma. is a monotone𝑀(𝑅) 𝑀(𝑅)

class so, we can define like this.
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So, R is in , R is and, since is a monotone class containing R, implies ,𝑈(𝑃) 𝑈(𝑃) 𝑈(𝑃)

contains M, R because is the smallest monotone class. So, now let Q belong to .𝑀(𝑅) 𝑀(𝑅)

Then if P is in R then we just saw Q belongs to because is contained in and𝑈(𝑃) 𝑀(𝑅) 𝑈(𝑃)

therefore, Q belongs to by the symmetry by symmetry you have P belongs to . So,𝑈(𝑃) 𝑈(𝑃)

this implies that R is contained in and this a monotone class this implies is𝑈(𝑃) 𝑀(𝑅)

contained in .𝑈(𝑄)

So, if you have for all P and Q in , is contained in this implies that ,𝑀(𝑅) 𝑀(𝑅) 𝑈(𝑃) 𝑃 ∪ 𝑄

, belongs to , that is this is an algebra. Now, E i, i equals 1 to infinity𝑃\𝑄 𝑄\𝑃 𝑀(𝑅) 𝑀(𝑅)

countable collection in , then F i equals to union, F n is equals to union i equals 1 to n,𝑀(𝑅)

E i belongs to a , because this is an algebra and F n is increasing this implies union i𝑀(𝑅)

equals 1 to infinity E i, equals union i equals 1 to infinity, n equals 1 to infinity F n belongs to

MR.

So, this implies that is a algebra and it contains and therefore, you have𝑀(𝑅) σ 𝑅 𝑀(𝑅)

contains S of R on the other hand is a , is a monotone class and this implies𝑆(𝑅) σ 𝑆(𝑅)

contains . So, is contained , is contained in and therefore, this𝑀(𝑅) 𝑀(𝑅) 𝑆(𝑅) 𝑆(𝑅) 𝑀(𝑅)

implies that . So, if you have an algebra then whether you make the monotone𝑆(𝑅) = 𝑀(𝑅)

class or is algebra it does not matter.σ

(Refer Slide Time:  23:41)



So, next proposition

Proposition: measurable spaces then , where is equal(𝑋, 𝑆),  (𝑌, 𝑇) 𝑆 × 𝑇 = 𝑀(𝐸) 𝐸

to eliminatory sets. So, if you take all the elementary sets, then the algebra generated byσ

elementary sets and algebra generated and the monotone class generated by the elementaryσ

sets both are 1 and the same.

Proof: By previous proposition enough to show is an algebra. So, of course𝐸 𝑋 × 𝑌

is a measurable rectangle.

So , and then you must this is some set theory, which you𝐴
𝑖

∈ 𝑆,   𝑖 = 1, 2 𝐵
𝑖

∈ 𝑇,  𝑖 = 1, 2

should check it is nothing but and𝐴
1

× 𝐵
1

∩ 𝐴
2

× 𝐵
2

𝐴
1

× 𝐴
2

∩ 𝐵
1

× 𝐵
2

this is check and therefore, the𝐴
1

× 𝐵
1
\𝐴

2
× 𝐵

2
= 𝐴

1
\𝐴

2
× 𝐵

1
\𝐵

2
∪ 𝐴

1
∩ 𝐴

2
× 𝐵

1
\𝐵

2

intersection of any measurable rectangle is a measurable rectangle and the difference of

measurable rectangles is the disjoint union of measurable rectangles, and therefore, it is an

elementary set.

Therefore, you have that so, this implies so, if you take any elementary sets then the different

union and difference will just be again and elementary set because of these 2 relationships

which we have used and therefore, E is an algebra, what is E? E equals finite disjoint unions

of measurable rectangles and therefore, that is again an algebra and then by the previous

theorem we know that the algebra generated this and monotone class generated by this areσ

one in the same so we will continue this next time.


