
Measure and Integration
Professor. S. Kesavan

Department of Mathematics
Indian Institute of Technology Madras

Lecture-46
7.5 – Functions of bounded variation

(Refer Slide Time: 00:17)

Functions of bounded variation:

We now continue with Functions of bounded variation. So, now we were looking at real

valued functions. So, now consider f a vector valued map from . So,  𝑓: [𝑎, 𝑏] → ℝ𝑁

𝑓(𝑥) = 𝑓
1
(𝑥),  𝑓

2
(𝑥),  .  .  .  , 𝑓

𝑁
(𝑥)( ).

So, each one and then | this vector so,𝑓
𝑖
: [𝑎, 𝑏] → ℝ,   𝑖 ≤ 𝑖 ≤ 𝑁 𝑓(𝑥)| =

𝑖=1

𝑁

∑ |𝑓
𝑖
(𝑥)|2⎡⎢⎢⎣

⎤⎥⎥⎦

1/2

this is the usual Euclidean norm.

and we say that if you have P any partition we say 𝑃 = 𝑎 = 𝑥
0

< 𝑥
1

<  .  .  .  < 𝑥
𝑛

= 𝑏{ }

𝑡(𝑃, 𝑓) =
𝑖=1

𝑁

∑ |𝑓
𝑖
(𝑥) − 𝑓 (𝑥

𝑖−1
)|



where mod of the vector is given by the Euclidean norm in this way and therefore, now you

can say the f is now a vector. 𝑇𝑏
𝑎
(𝑓) = 𝑠𝑢𝑝

𝑃
 𝑡(𝑃, 𝑓) 

So, this is how an f is BV bounded variation if . Now, given f you can define𝑇𝑏
𝑎
(𝑓) <+ ∞

[𝑎,𝑏]
∫ 𝑓 𝑑𝑥

1
=

[𝑎,𝑏]
∫ 𝑓

𝑖
 𝑑𝑥

1( )
𝑖=1

𝑁

so, this is n tupple. Similarly, f dashed at any x is𝑓'(𝑥) = 𝑓'
1
(𝑥),  𝑓

2

'(𝑥),  .  .  .  , 𝑓
𝑁

'(𝑥)( ).

the gradient so, you have it is not the gradient this is this is derivative𝑓'
1
(𝑥) 𝑓'

𝑁
(𝑥)

component choice. So, this is the derivative of the .𝑓
𝑁

(𝑥)
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So, now, we have the usual estimation lemma which is all important so,

Lemma:  Let integrable. Then integral𝑓: [𝑎, 𝑏] → ℝ𝑁

[𝑎,𝑏]
∫ 𝑓  𝑑𝑚

1

||||

||||
≤

[𝑎,𝑏]
∫ |𝑓|  𝑑𝑚

1

remember this vector and its modulus is the usual Euclidean norm is less than or equal to

mod f again Euclidean norm over [a, b]. So, this is the usual theorem which you expect𝑑𝑚
1

to have. So, let us see how we prove this.

Proof: So, let us take and𝑦 =
[𝑎,𝑏]
∫ 𝑓 𝑑𝑚

1
,    𝑦 = 𝑦

1
, 𝑦

2
,  .  .  .  , 𝑦

𝑁( )

. So, now star trivially true if so, assume , what is𝑦
𝑖

=
[𝑎,𝑏]
∫ 𝑓

𝑖
 𝑑𝑚

1
,  1 ≤ 𝑖 ≤ 𝑁 𝑦 = 0 𝑦 ≠ 0

|𝑦|2 =
𝑖=1

𝑁

∑ 𝑦
𝑖
2 =

𝑖=1

𝑁

∑ 𝑦
𝑖

[𝑎,𝑏]
∫ 𝑓

𝑖
 𝑑𝑚

1
=

[𝑎,𝑏]
∫ ∑ 𝑦

𝑖
𝑓

𝑖
 𝑑𝑚

1

and then you do not need to put the modulus because it is a square of a real number, and that

is equal to sigma i equals 1 to n. I am going to now write it as yi integral fi dm 1.



But that is equal to since yi is now a number i equals 1 to n integral of ab sorry sigma, yi fi

dm 1 and now, you apply the Cauchy Schwarz inequality

.≤
[𝑎,𝑏]
∫ |𝑦||𝑓| 𝑑𝑚

1
= |𝑦|

[𝑎,𝑏]
∫ |𝑓| 𝑑𝑚

1

Then that is equal to mod y is again a number it comes out of the integral ab mod f dm 1. So,

mod y is not 0. So, divide both sides by mod y to get star.
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So, now we are going to imitate propositions which we did earlier. So,

Proposition: Let be continuously differentiable that means, its derivatives𝑓: [𝑎, 𝑏] → ℝ𝑁

for each i is continuously differentiable. Then is BV and𝑓
𝑖

𝑓 𝑇
𝑎

𝑏(𝑓) =
[𝑎,𝑏]
∫ |𝑓| 𝑑𝑚

1
.

Proof: continuously differentiable that means, continuously𝑓: [𝑎, 𝑏] → ℝ𝑁 𝑓
𝑖

differentiable for each , so, exactly as before so, you look up the previous proof, you get the𝑖

𝑇
𝑎

𝑏(𝑓) =
[𝑎,𝑏]
∫ |𝑓| 𝑑𝑚

1
.



So, this is already done for each you have to do it component wise and then it is exactly like

before. Now, to prove the reverse inequality. So, now, what do you do you take so, 𝑓'

continuous on ab implies uniformly continuous therefore, given any there existsε > 0 

such that So, any partition such thatδ > 0 |𝑥 − 𝑦| < δ ⇒  |𝑓'(𝑥) − 𝑓'(𝑦)| < ε. 𝑃

.∆(𝑃) < δ, ⇒  𝑚𝑎𝑥
1≤𝑖≤𝑛

(𝑥
𝑖

− 𝑥
𝑗
) < δ

So, if . (Refer Slide Time: 10:00)𝑥
𝑖−1

≤ 𝑡 ≤ 𝑥
𝑖
  ,  𝑡ℎ𝑒𝑛 |𝑓

𝑖
(𝑡)| ≤ |𝑓'(𝑥

𝑖
)| + ε



So, that implies the .
𝑥

𝑖−1

𝑥
𝑖

∫ |𝑓'(𝑡)| 𝑑𝑡 − ε(𝑥
𝑖

− 𝑥
𝑖−1

) ≤ |𝑓'(𝑥
𝑖
)|(𝑥

𝑖
− 𝑥

𝑖−1
)

So I am just integrated I brought the epsilon to the side and integrated it and therefore, they

and that is|𝑓'(𝑥
𝑖
)|(𝑥

𝑖
− 𝑥

𝑖−1
)

.=
𝑥

𝑖−1

𝑥
𝑖

∫ 𝑓'(𝑡) + 𝑓'(𝑥
𝑖
) − 𝑓'(𝑡)( )𝑑𝑡

|
|
|
|

|
|
|
|

≤
𝑥

𝑖−1

𝑥
𝑖

∫ 𝑓'(𝑡)𝑑𝑡
|
|
|
|

|
|
|
|

+
𝑥

𝑖−1

𝑥
𝑖

∫ 𝑓'(𝑥
𝑖
) − 𝑓'(𝑡)( )𝑑𝑡

|
|
|
|

|
|
|
|

Now, we can break this this is ≤ |𝑓(𝑥
𝑖
) − 𝑓(𝑥

𝑖−1
)| + ε(𝑥

𝑖
− 𝑥

𝑖−1
)

But is continuously differentiable and this integral here xi minus one to x f dash t dt is𝐹

nothing but mod f of xi minus f of xi minus 1 plus here the if you take the modulus inside in

the second integral that is less than epsilon in this interval we know and therefore, that is less

than .ε(𝑥
𝑖

− 𝑥
𝑖−1

)

So, now you sum over all so, you get integral1 ≤ 𝑖 ≤ 𝑛

[𝑎,𝑏]
∫ |𝑓(𝑡)'|𝑑𝑡 − ε(𝑎 − 𝑏) ≤ 𝑡(𝑃, 𝑓) + ε(𝑏 − 𝑎).

you will just get epsilon times b minus a and here also your minus epsilon times b minus a in

the first because of the summation of the step.



In other words,

,
[𝑎,𝑏]
∫ |𝑓(𝑡)'|𝑑𝑚

1
=

[𝑎,𝑏]
∫ |𝑓(𝑡)'|𝑑𝑡 ≤ 𝑇𝑏

𝑎
(𝑓) + 2ε(𝑏 − 𝑎)

because it is continuously differentiable continuous map and therefore this riemann integrable

etcetera etcetera etcetera and therefore, this is now you can let because epsilon isε → 0

arbitrarily chosen and so, you get the

[𝑎,𝑏]
∫ |𝑓(𝑡)'|𝑑𝑚

1
≤ 𝑇𝑏

𝑎
(𝑓)

and you have the other reverse inequality also and therefore, you have equality. So, this

proves that theorem.
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So, now let us consider so,

Example (Rectifiable arcs): An blocks so, an arc on a curve in the plane is a continuous

map . So, how do you compute the length of what do we mean by the length ofγ: [𝑎,  𝑏] → ℝ

the curve. So, what we do is take partition of [a,b] and then you take𝑃

𝑖=1

𝑛

∑ γ(𝑥
𝑖
) − γ(𝑥

𝑖−1
)| | =  



sum of the lengths of the chords called joining .γ(𝑥
𝑖
) 𝑎𝑛𝑑  γ(𝑥

𝑖−1
),   1 ≤ 𝑖 ≤ 𝑛

So, you have a curve like this for each so, you have you mark off theγ(𝑥
1
),  γ(𝑥

2
),  γ(𝑥

3
)

points and then you join these by straight lines and then some of the length and you say arc is

rectifiable that is length is well defined if

𝑠𝑢𝑝
𝑃

∑ |γ(𝑥
𝑖
) − γ(𝑥

𝑖−1
)| <+ ∞

in other words that is arc is rectifiable if and only if is BV and length is precisely .γ 𝑇𝑏
𝑎
(γ)
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So, the length of a curve is nothing but the total variation of the curve and the function has to

be a bounded variation. So, now, let us take assume gamma is given parametrically as gamma

t equals xt y fi and xy continuously differentiable then by above proposition

𝑇𝑏
𝑏
(γ) =

[𝑎,𝑏]
∫ |γ'| 𝑑𝑡 =

𝑎

𝑏

∫ 𝑥.(𝑡)2 + 𝑦.(𝑡)2𝑑𝑡

and this is exactly the formula which we have studied in the original calculus courses for the

length of a curve which is differentiable.



So, this is the cover that formula in this case we have through something more general. Now,

we come back to the l valued functions. So,

Proposition: Let integrable then the indefinite integral of f defined by𝑓: [𝑎, 𝑏] → ℝ

capital

𝐹(𝑥) =
[𝑎,𝑥]
∫ 𝑓 𝑑𝑚

1
,    𝑥 ∈ [𝑎,  𝑏],

is a uniformly continuous function of bounded variation.
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Proof, . Now is integrable that is given  𝐹(𝑥) − 𝐹(𝑦)| =
[𝑥, 𝑦]

∫ 𝑓 𝑑𝑚
1

||||

||||
≤

[𝑥,𝑦]
∫ |𝑓| 𝑑𝑚

1
𝑓

So, this is the what we call theε > 0,   ∃δ > 0  𝑠. 𝑡.   |𝑥 − 𝑦| < δ ⇒
[𝑥,𝑦]
∫ |𝑓| 𝑑𝑚

1
< ε.  

absolute continuity of the indefinite integral we have proved this already for the integrable

functions and therefore, we have so, this implies that capital is uniformly continuous.𝐹

Now, let , partition of then you have𝑃 = 𝑎 = 𝑥
0

< 𝑥
1

<  .  .  .  < 𝑥
𝑛

= 𝑏{ } [𝑎, 𝑏]

.
𝑖=1

𝑛

∑ |𝐹(𝑥
𝑖
) − 𝐹(𝑥

𝑖−1
)| ≤

𝑖=1

𝑛

∑
[𝑥

𝑖
, 𝑥

𝑖−1
]

∫ |𝑓| 𝑑𝑚
1

=
[𝑎 , 𝑏]

∫ |𝑓| 𝑑𝑚
1

<+ ∞

𝑇
𝑎

𝑏(𝐹) ≤
[𝑎 , 𝑏]

∫ |𝑓| 𝑑𝑚
1

<+ ∞

So, is of bounded variation.𝐹

So, if you want for instance we were asking the question when can you write a function

.𝑓(𝑥) − 𝑓(𝑎) =
[𝑎 , 𝑥]

∫ 𝑓' 𝑑𝑚
1

When is differentiable and we said for instance since the cantor function you cannot do it𝑓

and the reason is because if you have an indefinite integral which a to this indefinite𝑋

integral even if is integrable then the original function is uniformly continuous and of𝑓'

bounded variation.

So, that already places a set of restrictions on functions for which the theorem can be true.

Therefore, if you have functions is differentiable almost everywhere then if you want if you

have a hope for the fundamental theorem of calculus to be true, it has to be uniformly

continuous and a bounded variation in the next section a little later we will give you a

complete set of necessary and sufficient conditions which will tell you when you can actually

do this even this is not enough but this at least necessary condition. So, we will continue to

study the indefinite integral in the next session.


