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We now start a new chapter. So, this is differentiation. So, one of the important features of
differential integral calculus is that differentiation and integration really have 2 sides of the same
coin, more precisely the fundamental theorem states that if you have f is a Riemann integrable

function, which is the derivative of a function capital F.

b
So, F Riemann integrable f = F', then F(b) — F(a) = [ f(x)dx.
a

So, we would like to investigate how far this goes. So, investigate how far this is true, if F is
differentiable only almost everywhere and F' = f almost everywhere. So, we want this and we

want to know if you can have the same (())(01:57) set.
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Cantor function. So, f(0) = 0, f(1) = 1, fis a monotonically increasing continuous function.

Now, if C= the cantor set, then C° = the disjoint union of intervals if you remember the

construction and on each interval on each such interval, if you remember the construction of the

cantor function fis a constant f' = 0. This fis differentiable on C “ that is C is of measure 0. It is

almost everywhere and f' = 0 almost everywhere.

Butin f(1) — f(0) =1 — 0 = 1, whereas, | f'dm = 0.
[a.5]

So, these two are not equal. So, the fundamental theorem of calculus one has to be a little careful

when we want to do. So, we want to investigate to give conditions when we have

b

f(b) — f(a) = [ f'(x)dx. So, when can we write this? So, we want to see, so, we will start
a

looking at various classes of differentiable functions which are differentiable almost everywhere.
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Monotonic functions.

Definition: Let [ be a collection of intervals covering a set E c R. It is said to be a Vitali
covering of E if for every € > 0 and for every x in E, there exists I € [such that x € I and

ml(l) < e

Lemma: (Vitali covering lemma). Let E € R, p * (E) < oo. Let I be the Vitali covering of E.

Then given € > 0, we can find a finite subcollection of I, say {/ v I - IN}, of disjoint intervals
such that p * (E\szlNI],) < e

So, you are having a Vitali covering of a set of finite outer measure then you can extract a
disjoint collection of intervals such that their union covers almost completely the given set
namely almost covers it means given any epsilon it will cover E except for a set of measures less

than epsilon. So, this is the Vitali covering lemma.
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proof: Observe that the intervals can be open closed or half open by adding or removing
endpoints measure does not change. So, nothing changes as far as a measure of this concern and

therefore without loss of generality, we assume all intervals in I are closed. Now,
uH*(E)< o=3UDE, s.t.p* (U)(=m1(U)) < o0,

Further since, we are dealing with a Vitali covering that means only small intervals count this

without loss of generality for every I in I, we have I € U. Now, let us choose / L € I arbitrarily.

Having chosen [ pLp disjoint, we choose 1 Nl inductively as follows:



o IfECU kleI v then the process stops.

N
e Ifnotletx € E\Uk=1 Ik.

So, the distance d = distance of x from U Kot I , 18 positive. So, since I is a Vitali covering that

exists I in I such that x belongs to I and m 1(I) < %. So, by and of course and so, I N [ p = b,

forall 1 < k < N. So, the conclusion that is given there exists I in I disjoined from I1 to Ik and
x belongs to 1. So, now you said kn to be the supremum of m1 of I, I belong to I, I intersection Ik
is empty 1 less than equal to k less than equal to n. So, by assumption all intervals in I are

contained in U. So, this implies that kn is less than equal to m1 of U which is finite.

So, kn is a finite quantity we have taken supremum over something so, we want to know that it is

<k

finite. Now, find IN+1 such that IN+ N+1) <k,

k
NI =¢,1<k<Nand—<m (I
1 k 2 1

This implies that u_, l,cu= k2—:1 ml(Ik) < oo,

So, € > 0, choose N € N such that }; ml(lk) < %
k=N+1

N
SetR = E\Uk:1 Ik.
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So, claim: p * (R) < €, which will complete the proof.

So, let x € R, so, that exists I in I, I N Ik = ¢, 1 <k <N, x €1 Assume if possible,

Irnl = ¢ for all k, we will get a contradiction.

So, this will not be possible, why is it so? Then this will imply that



0< ml(I) < kn < Zml(lnk) -0,

and therefore, you have a contradiction. So, there exists n > Nsuch that

Inil + o, 1 ni = ¢, V1 <k <n Now ml(I) Skn_ls Zml(ln). So, letcn be the

midpoint ofln. So,x €I, In In # ¢. Therefore,
1 5
|x — cnl < ml(l) + 2ml(In) < 7m1(1n)'

: - _ 2 S
Now, you said ]n = [cn > ml(In), c +- ml(In)]. Then X € ]n and

m () <5m (I ), n = N. So, this implies that R < U "] . So,

n=N+1

u*(R) < X ml(]n) <5 ) ml(lk) < e
n=N+1 k=N+1

That completes the proof.

So, this is a fairly complicated lemma, but anyway there are no deep ideas in it. Just a question of

selecting the definition of supremum summation of series (())(26:24) but it is the several.

Remark: in the literature there are several similar results called Vitali covering lemma and in all

. . . 2 n
space dimensions not necessarily R you can have an R, R and so on.

And the basic idea is that if you have a set of finite outer measure which is covered by means of
basic open sets which are of arbitrarily small size then you can extract a disjoint finite set from
them. Such that in a union almost covers E in the sense that the complement of the uncovered
portion can be as small as measure (())(27:42) So, that is called the Vitali covering lemma. Now
we will use this to show that monotonic functions are differentiable almost everywhere. So, that

will be the next thing we will do.



