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We now do some exercises:

1. (X, S, n) measure space, {f n} sequence of measurable functions converging uniformly to an

integrable function to an integrable function f. Is it necessary that
Jf du~ [ fdu
X X

Solution: True if p(X) < oo (assignment). So, not necessarily true if u(X) =+ oo.

So, we have to give a counterexample. So, let us take X = R, Lebesgue measure. So, fn is
the function which is given like this and draw the picture you can so, this is minus of n plus 1,

this minus n this is n and this is n plus 1.

So, the function is equal to 1 by n from minus n to n and then goes to 0 here, so, fn is a

function with compact support therefore, fn is definitely integrable and then

1 .
If | < =f - Ounif.



Butffndm1 > [ fdm, = % 2n = 2= ffndm1 > 2.
R R

Therefore, it does not converge to 0 and therefore is not necessarily true. But if it is a finite
metric space then uniform convergence does imply whatever this result is, and that is very

easy to check. Just apply the definition and you can do it like that.
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(2) Let f: R = R be Lebesgue integrable. Let t € R be fixed. Define

gx) = fx + 0).



Let [a,b] © R.Show that [ fdm = [ gdm.

[a,b] [a+t,b+t]

Solution: So, let E ¢ R Lebesgue measurable and let f = X So,

g(x)=f(t+x)=XE(t+x) 1, ifx€eE -t
=0 ifx¢ E—t

So, this means that g(x) = Xp So,

J gam =m (abln(E-t)=m(a+tb+t]nE)
[a+t,b+t]

= X dm, = | f dm,.

[a+t,b+t] [a+t,b+t]
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So, true for characteristic functions by linearity true for simple functions then by monotone
convergence theorem true for non-negative functions, because every non-negative
measurable function is the increasing limit of the of simple functions. So, given any

non-negative function f you can take ¢n Tf, ¢n simple non negative, f is also non negative

then what do you then of course, phi n of x plus t will increase the f of x plus t and then

everything is true then by the monotone convergence theorem you can easily prove the result



: : + - .
and then prove for integrable functions because, you take f = f — f , so, you use this so,

we all are most of our work is there only for the functions which are characteristic functions.
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(3) (Differentiation under the integrand sign): Let f: [0, 1] X [0, 1] = R, such that for every t
fixed you have (of course, in [0,1]) x — f(x,t)is integrable. For every x € [0, 1] fixed

t = f(x,t) is continuously differentiable and the derivative (with respect to t) which we

define by —gtL (x, t) is uniformly bounded.

(Refer Slide Time: 10:36)

WY £iLodaled =M. &+ ¥ Fred (L tad)
0 £kl nbeealle
Voare Do fixed, €05 Lflin b R sn)te Jaiatioe
(ouk B\ 230t b ueif Ll
2>k

%-q'\*ml‘ f)‘; &‘ '?f(w\g\‘-)mltg\ = S‘__j;é-(-\\-xa\m~
Eorcd o)

SR 1 SU—(‘,WA\ - YA, = \5 %5. (e eoh) deny
= ¢
% il Led
04 &4 &= 80




J\ e £ 3 = '>£. v
Frns Frok oy \( Rbe O\ S e S _5_?{ b
@ el
ic_g, é\_ Si{,(“y.&\ - @(g,)&)i\olmi = \3 % (»)twk\ ey Q/\\[T)

D,J Leid
04 B < =805 .
a0 PRI AR NPT Cadimidy 4? e &
by S¢

\lb_g (\,,wn\\ <M g,
e

J\ ;f(‘vl&\ B

Lo,)

B per Lo L (Lo pendh =
\I\—BU h I
\\

3 .
3‘; 5 f/x,k\ &ml .
Lol

Show that == [ f(x,)dm (x) = [ 2L (x, t)dm,.
[0,1] [01]

Solution: So, let us look at the difference

— [ f@t+h) — feoldm = [ <Lt + h)ydm (MVT)
[0,1] [0,1]

d a d
Now,ash > 0,2C (x,t + 0h) > 2L (x,t + h) and |- (x, ¢t + 8R)| < M, V. t.

Therefore, by the dominated convergence theorem

: 1 _ of

lim - [ [f(x,t + h) — f(x,)]dm = [ <= (x t)dm,.

h—0  [0,1] [0,1]
So, a very nice application of the dominated convergence theorem to show that the
differentiation under the integral sign always requests some proof and therefore, this is 1 set

of sufficient conditions which will tell you that you have this condition.
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(4) (X, S, p) measure space, fn, f measurable functions and fn converges in measure to f,

| fnl < g, integrable for all n. Show that

[1f, = fldn > 0asn > o.
X

solution: Let fn be any sub sequence. Then fn converges in measure to f.

k k

= 3 further sub sequence fn converges to f a.e.

k,

Then by the dominated convergence theorem, you have [ | fn — f|dn = 0V subsequence
X Tk

3 =1, = fldu =0
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(5) (a) Let f:[0, 0] = R be uniformly continuous and integrable. Show that
f(x)> 0asx — oo.

solution: If not then you can find an epsilon greater than 0 and t — oo (and you can also

take |tn —t 1| > 1)s.t |f (tn)l > €. Now, f is uniformly continuous = there exists a

§>0s.t |x -yl < 8= |f(x) - fOI <5

SVyelt, =8¢t + 8 Ifo)l =%

Butthen [ |fldm =% [ |fldm =+ oo
[0,00] n=1[t —8,t +8]

So, this is not possible and therefore, f(x) = 0 as x — oo.
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(b) Above is not true if f is just continuous. So, let us take, so, we have to give an example.
So, let us take a function fn f in the following function. So, f is such that each n you take n
minus 1 by n square, n plus 1 by n square and then it is the function is height 1 here and then
it goes to 0 and 0 elsewhere, so this is for every n in N, so, what does the function look like?
So, it looks like this 1 and then here is 2, 3 and so on. So, the function is like this. So, this
implies that f does not go to 0, fx as x tends to plus infinity but what is integral of dml a

non-negative function is nothing but sigma n equals 1 to infinity.

The area of all these triangles the height is 1, base is 1 by 2, height is 1. And I mean 1 by 2
into height is 1 and base is 2 by n squared which is sigma 1 by n squared which we know is pi
squared by 6 which is of course, finite therefore, f is integrable but it does not vanish at

infinity. So, we will continue with the exercises next time.



