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We now do some exercises:

1. measure space, sequence of measurable functions converging uniformly to an(𝑋, 𝑆, µ) {𝑓
𝑛
} 

integrable function to an integrable function f. Is it necessary that

𝑋
∫ 𝑓

𝑛
𝑑µ →

𝑋
∫ 𝑓𝑑µ.

Solution: True if (assignment). So, not necessarily true if .µ(𝑋) < ∞ µ(𝑋) =+ ∞

So, we have to give a counterexample. So, let us take Lebesgue measure. So, fn is𝑋 = ℝ,  

the function which is given like this and draw the picture you can so, this is minus of n plus 1,

this minus n this is n and this is n plus 1.

So, the function is equal to 1 by n from minus n to n and then goes to 0 here, so, fn is a

function with compact support therefore, fn is definitely integrable and then

|𝑓
𝑛
| ≤ 1

𝑛 ⇒ 𝑓
𝑛

→ 0 𝑢𝑛𝑖𝑓.



But
ℝ
∫ 𝑓

𝑛
𝑑𝑚

1
≥

[−𝑛,𝑛]
∫ 𝑓

𝑛
𝑑𝑚

1
= 1

𝑛 . 2𝑛 = 2 ⇒
ℝ
∫ 𝑓

𝑛
𝑑𝑚

1
≥ 2.

Therefore, it does not converge to 0 and therefore is not necessarily true. But if it is a finite

metric space then uniform convergence does imply whatever this result is, and that is very

easy to check. Just apply the definition and you can do it like that.
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(2) Let be Lebesgue integrable. Let be fixed. Define𝑓: ℝ → ℝ 𝑡 ∈ ℝ

𝑔(𝑥) = 𝑓(𝑥 + 𝑡).



Let . Show that[𝑎, 𝑏] ⊂ ℝ
[𝑎,𝑏]
∫ 𝑓𝑑𝑚

1
=

[𝑎+𝑡,𝑏+𝑡]
∫ 𝑔𝑑𝑚

1
.

Solution: So, let Lebesgue measurable and let . So,𝐸 ⊂ ℝ 𝑓 = χ
𝐸

𝑔(𝑥) = 𝑓(𝑡 + 𝑥) = χ
𝐸

(𝑡 + 𝑥) = 1,  𝑖𝑓 𝑥 ∈ 𝐸 − 𝑡,

= 0,  𝑖𝑓 𝑥 ∉  𝐸 − 𝑡.

So, this means that . So,𝑔(𝑥) = χ
𝐸−𝑡

[𝑎+𝑡,𝑏+𝑡]
∫ 𝑔𝑑𝑚

1
= 𝑚

1
([𝑎, 𝑏] ∩ (𝐸 − 𝑡)) = 𝑚

1
([𝑎 + 𝑡, 𝑏 + 𝑡] ∩ 𝐸)

=
[𝑎+𝑡,𝑏+𝑡]

∫ χ
𝐸

𝑑𝑚
1

=
[𝑎+𝑡,𝑏+𝑡]

∫ 𝑓𝑑𝑚
1
.
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So, true for characteristic functions by linearity true for simple functions then by monotone

convergence theorem true for non-negative functions, because every non-negative

measurable function is the increasing limit of the of simple functions. So, given any

non-negative function f you can take simple non negative, f is also non negativeϕ
𝑛

↑ 𝑓,  ϕ
𝑛

then what do you then of course, phi n of x plus t will increase the f of x plus t and then

everything is true then by the monotone convergence theorem you can easily prove the result



and then prove for integrable functions because, you take , so, you use this so,𝑓 = 𝑓+ − 𝑓−

we all are most of our work is there only for the functions which are characteristic functions.
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(3) (Differentiation under the integrand sign): Let , such that for every t𝑓: [0, 1] × [0, 1] → ℝ

fixed you have (of course, in ) is integrable. For every fixed[0, 1] 𝑥 → 𝑓(𝑥, 𝑡) 𝑥 ∈ [0, 1] 

is continuously differentiable and the derivative (with respect to t) which we𝑡 → 𝑓(𝑥, 𝑡)

define by is uniformly bounded.∂𝑓
∂𝑡 (𝑥, 𝑡) 

(Refer Slide Time: 10:36)



Show that 𝑑
𝑑𝑡

[0,1]
∫ 𝑓(𝑥, 𝑡)𝑑𝑚

1
(𝑥) =

[0,1]
∫ ∂𝑓

∂𝑡 (𝑥, 𝑡)𝑑𝑚
1
.

Solution: So, let us look at the difference

(MVT)1
ℎ

[0,1]
∫ [𝑓(𝑥, 𝑡 + ℎ) − 𝑓(𝑥, 𝑡)]𝑑𝑚

1
=

[0,1]
∫ ∂𝑓

∂𝑡 (𝑥, 𝑡 + ℎ)𝑑𝑚
1

Now, as ℎ → 0, ∂𝑓
∂𝑡 (𝑥, 𝑡 + θℎ) → ∂𝑓

∂𝑡 (𝑥, 𝑡 + ℎ) 𝑎𝑛𝑑 | ∂𝑓
∂𝑡 (𝑥, 𝑡 + θℎ)| ≤ 𝑀,  ∀ 𝑥, 𝑡.  

Therefore, by the dominated convergence theorem

ℎ 0
lim
→

1
ℎ

[0,1]
∫ [𝑓(𝑥, 𝑡 + ℎ) − 𝑓(𝑥, 𝑡)]𝑑𝑚

1
=

[0,1]
∫ ∂𝑓

∂𝑡 (𝑥, 𝑡)𝑑𝑚
1
.

So, a very nice application of the dominated convergence theorem to show that the

differentiation under the integral sign always requests some proof and therefore, this is 1 set

of sufficient conditions which will tell you that you have this condition.
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(4) measure space, , f measurable functions and converges in measure to f,(𝑋, 𝑆, µ) 𝑓
𝑛

𝑓
𝑛

integrable for all n. Show that|𝑓
𝑛
| ≤ 𝑔,  

𝑋
∫ |𝑓

𝑛
− 𝑓|𝑑µ → 0 𝑎𝑠 𝑛 → ∞.

solution: Let be any sub sequence. Then converges in measure to f.𝑓
𝑛

𝑘

𝑓
𝑛

𝑘

further sub sequence converges to f a.e.⇒ ∃ 𝑓
𝑛

𝑘
𝑙

Then by the dominated convergence theorem, you have subsequence
𝑋
∫ |𝑓

𝑛
𝑘

𝑙

− 𝑓|𝑑µ = 0 ∀ 

.{𝑓
𝑛

𝑘

}. ⇒
𝑋
∫ |𝑓

𝑛
− 𝑓|𝑑µ = 0
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(5) (a) Let be uniformly continuous and integrable. Show that𝑓: [0, ∞] → ℝ 

𝑓(𝑥) → 0 𝑎𝑠 𝑥 → ∞.

solution: If not then you can find an epsilon greater than 0 and and you can also𝑡
𝑛

→ ∞ (

take . Now, f is uniformly continuous there exists a|𝑡
𝑛

− 𝑡
𝑛−1

| ≥ 1) 𝑠. 𝑡.  |𝑓(𝑡
𝑛
)| ≥ ϵ ⇒  

δ > 0 𝑠. 𝑡.  |𝑥 − 𝑦| < δ ⇒  |𝑓(𝑥) − 𝑓(𝑦)| < ϵ
2 .

⇒ ∀ 𝑦 ∈ [𝑡
𝑛

− δ,  𝑡
𝑛

+ δ],  |𝑓(𝑦)| ≥ ϵ
2 .

But then
[0,∞]

∫ |𝑓|𝑑𝑚
1

≥
𝑛=1

∞

∑
[𝑡

𝑛
−δ, 𝑡

𝑛
+δ]

∫ |𝑓|𝑑𝑚
1

=+ ∞.

So, this is not possible and therefore, .𝑓(𝑥) → 0 𝑎𝑠 𝑥 → ∞
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(b) Above is not true if f is just continuous. So, let us take, so, we have to give an example.

So, let us take a function fn f in the following function. So, f is such that each n you take n

minus 1 by n square, n plus 1 by n square and then it is the function is height 1 here and then

it goes to 0 and 0 elsewhere, so this is for every n in N, so, what does the function look like?

So, it looks like this 1 and then here is 2, 3 and so on. So, the function is like this. So, this

implies that f does not go to 0, fx as x tends to plus infinity but what is integral of dm1 a

non-negative function is nothing but sigma n equals 1 to infinity.

The area of all these triangles the height is 1, base is 1 by 2, height is 1. And I mean 1 by 2

into height is 1 and base is 2 by n squared which is sigma 1 by n squared which we know is pi

squared by 6 which is of course, finite therefore, f is integrable but it does not vanish at

infinity. So, we will continue with the exercises next time.


