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Our next topic is outer measure and measurable sets. So, we already stated this problem

before X is a non-empty set, R is a ring on X and is a measure on R. Then we wanted toµ 

know if we can extend to something bigger. For instance, R is a ring. So, in particular it is aµ

collection of subsets. So, can we extend to . is the smallest sigma ring, whichµ 𝑆(𝑅) 𝑆(𝑅)

contains R, because we are dealing with measure countable activity and so on.

So, it is always better to work with sigma ring or sigma algebra because countable unions,

countable intersections are close there rather than with the ring. So, once we, but to construct

something it is easier on a ring and therefore we want to know if there is some general

method to extend it to the whole thing. So, for this, we have a certain, very nice abstract

procedure, which we will in fact employ when constructing the limit measures later on.



Definition: X non-empty set, S- ring of subsets of X. It is set to be hereditary ifσ 𝐸 ∈ 𝑆

implies for every .𝐹 ∈ 𝑆 𝐹 ⊂ 𝐸

So, if the father has a property, the son, children get it also. So, that is the heritage property.

So, here, if you have a set E which is an S, then all subsets automatically belong to S. Now of

course, is a hereditary sigma ring.𝑃(𝑋) 

And now if you, as usual, if you take any intersection of hereditary sigma rings, it is

automatically hereditary. So, it is very easy to check because the intersection of sigma rings is

a sigma ring and the hereditary property. Again, it is very easy to check that it is. So, given E,

an arbitrary collection of subsets of X, there exists a smallest hereditary sigma ring

containing E: This is called the hereditary sigma ring generated by E.𝐻(𝐸),

So, that is the notation. Now, if you take all sets, which can be covered by a countable

number of sets in E that means, so this,

is a hereditary sigma ring, and therefore it contains{𝐴:  𝐴 ⊂ ∪
𝑖=1

∞𝐴
𝑖
,  𝐴

𝑖
∈ 𝐸}

.𝐻(𝐸)
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So, the conclusion is every element in can be covered by a countable number of𝐻(𝐸)

elements of E.
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So, now we come to a definition, another definition.

Definition: So, X non-empty set, and H a hereditary -ring of subsets of X. An extended realσ

valued function, on is called an outer measure ifµ * 𝐻

(1) µ * (𝐸) ≥ 0,  ∀ 𝐸 ∈ 𝐻,

(2) µ * (ϕ) = 0,

(3) 𝐸 ∈ 𝐻,  𝐹 ⊂ 𝐸 ⇒ µ * (𝐹) ≤ µ * (𝐸),

(4) Countable subadditivity: in{𝐸
𝑖
}

𝑖=1
∞ 𝐻 ⇒ µ * (∪

𝑖=1
∞𝐸

𝑖
) ≤

𝑖=1

∞

∑ µ * (𝐸
𝑖
).

So, this looks like a measure, but there are some differences.



First 2 properties are just the properties of a measure. And then third is a consequence of the

properties of measure, which you are now putting in here, because that was got from the a

countable additivity, which we do not have now. And it is a countable additive, which

involves disjoint sets and so on. Now, we are saying it is subadditive, which is also a property

of a measure.

So, it has some properties of a measure, but it is not necessarily a measure.

So, then an outer measure is called -finite, if every can be covered by a countableσ 𝐸 ∈ 𝐻 

collection of sets in H, with finite out of measure. So, 𝐸 ⊂ ∪
𝑖=1

∞𝐸
𝑖
,   µ * (𝐸

𝑖
) < ∞  ∀𝑖.
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Just as we had sigma finite measures, we can have sigma finite outer measures. So, why are

we defining this? Outer measures occur very naturally when we try to extend the measure.

So, we have the following proposition.

Proposition: X is a non-empty set, and R a ring on X, and is a measure on R. So, now youµ 

take the smallest hereditary sigma ring containing R.𝐸 ∈ 𝐻(𝑅),  



Define Then is an outer measure and itµ * (𝐸) = inf{
𝑖=1

∞

∑ µ(𝐸
𝑖
) :  𝐸 ⊂ ∪

𝑖=1
∞𝐸

𝑖
,  𝐸

𝑖
∈ 𝑅}. µ *

extends to . Further,  if is sigma finite, so is .µ µ µ *

proof. Step 1. So, is obvious because you are taking an infimum of non-negativeµ *≥ 0 

things and therefore it is non-negative.

Now, let us take then . So, therefore you have𝐸 ∈ 𝑅,  𝐸 ⊂ 𝐸 µ * (𝐸) ≤ µ(𝐸).

So, now on the other hand, if you are given , then by subadditivity of a measure𝐸 ⊂ ∪
𝑖=1

∞𝐸
𝑖

µ(𝐸) ≤
𝑖=1

∞

∑ µ(𝐸
𝑖
) ⇒ µ(𝐸) ≤ µ * (𝐸).

i.e., extends to⇒ ∀𝐸 ∈ 𝑅,  µ * (𝐸) = µ(𝐸),  µ * µ.

In particular, .µ * (ϕ) = 0
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Step 2: Suppose . Then of course, it is a hereditary sigma ring. So, F is𝐹 ⊂ 𝐸,  𝐸 ∈ 𝐻(𝑅)

also in . So, every countable cover (from R) of E is also a cover for F. So, you are𝐻(𝑅)

number of covers for F is more than the number of covers for E, and therefore automatically

this in implies that µ * (𝐹) ≤ µ * (𝐸).

Step 3: We prove countable subadditivity: So, let us take . So,𝐸 ⊂ ∪
𝑖=1

∞𝐸
𝑖
 ,  𝐸,  𝐸

𝑖
∈ 𝐻(𝑅)

if there exists an i such that then clearlyµ * (𝐸
𝑖
) = ∞,  µ * (𝐸) ≤

𝑖=1

∞

∑ µ * (𝐸
𝑖
).

So, therefore assume Given any there exists , j equals 1µ * (𝐸
𝑖
) < ∞ ,  ∀ 𝑖. ϵ > 0,  𝐸

𝑖𝑗
∈ 𝑅

to infinity, such that and you have𝐸
𝑖

⊂ ∪
𝑖=1

∞𝐸
𝑖𝑗

𝑗=1

∞

∑ µ(𝐸
𝑖𝑗

) < µ * (𝐸
𝑖
) + ϵ

2𝑖 .



This is just the definition of the infimum. So, you are defining it to be the infimum over all

countable covers. So, I can find a countable cover, which is bounded by mu star E, plus any

small quantity I like, and I am going to call that quantity epsilon by 2 power i.
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Then you have So, this is a countable cover with , for all i,j and𝐸 ⊂ ∪
𝑖=1

∞∪
𝑗=1

∞𝐸
𝑖𝑗

 . 𝐸
𝑖𝑗

∈ 𝑅 

µ * (𝐸) ≤
𝑖=1

∞

∑
𝑗=1

∞

∑ µ(𝐸
𝑖𝑗

) ≤
𝑖=1

∞

∑ (µ * (𝐸
𝑖
) + ϵ

2𝑖 ) =
𝑖=1

∞

∑ µ * (𝐸
𝑖
) + ϵ.

⇒ µ * (𝐸) ≤
𝑖=1

∞

∑ µ * (𝐸
𝑖
).

Step 4: We now take is -finite, So, you can write itµ σ 𝐸 ⊂ ∪
𝑖=1

∞𝐸
𝑖
,  𝐸

𝑖
∈ 𝑅,  𝐸 ∈ 𝐻(𝑅).  

as 𝐸 ⊂ ∪
𝑖=1

∞∪
𝑗=1

∞𝐸
𝑖𝑗

 ,  µ(𝐸
𝑖𝑗

) < ∞.

So, you have a countable cover of E, with the Eij and, but µ * (𝐸
𝑖𝑗

) = µ(𝐸
𝑖𝑗

) < ∞.

So, this completes the proof of the proposition. So, all questions have been proved.
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So, now an example.

Example: So we said - finite - finite. So, the question is finite, does it imply orµ σ ⇒  µ * σ µ

not that is finite but is still sigma finite ? Because of the previous proposition,µ * µ *

therefore finiteness does not extend, but sigma finiteness exists. So, what is an example for

this?

So, let us take , R= equals ring of finite subsets, is counting measure. Then of𝑋 = ℕ µ

course, is finite. Countable number union of singletons is in because is a sigmaµ 𝐻(𝑅) 𝐻(𝑅)

ring, which contains R singletons are all in R. Therefore, any a countable N will be in

singleton. So, this implies . So, it is a hereditary sigma ring. So, this implies thatℕ ∈ 𝐻(𝑅)

Now, if E is an infinite set, clearly . Because it is, you have to𝐻(𝑅) = 𝑃(ℕ). µ * (𝐸) = ∞

cover it by an infinite number of sets, countable numbers. Each one will have at least measure

1. And therefore, the infimum will also be plus infinity. So, of E will always be plusµ * (𝐸)

infinity. So, this implies that is not finite, but it is sigma finite.µ * (𝐸)

So, we have a very natural way in which given a measure on a ring, there is a hereditary

sigma ring and an outer measure. Now, given a hereditary sigma ring and an outer measure,

we will see how to extract and measure out of it. That will be the thing, which we will see

next.


