Measure and Integration
Professor S. Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Lecture No- 4
1.4 Outer measure
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Our next topic is outer measure and measurable sets. So, we already stated this problem
before X is a non-empty set, R is a ring on X and p is a measure on R. Then we wanted to
know if we can extend p to something bigger. For instance, R is a ring. So, in particular it is a
collection of subsets. So, can we extend p to S(R). S(R) is the smallest sigma ring, which

contains R, because we are dealing with measure countable activity and so on.

So, it is always better to work with sigma ring or sigma algebra because countable unions,
countable intersections are close there rather than with the ring. So, once we, but to construct
something it is easier on a ring and therefore we want to know if there is some general
method to extend it to the whole thing. So, for this, we have a certain, very nice abstract

procedure, which we will in fact employ when constructing the limit measures later on.



Definition: X non-empty set, S- o ring of subsets of X. It is set to be hereditary if E € S
implies F € S forevery F C E.

So, if the father has a property, the son, children get it also. So, that is the heritage property.
So, here, if you have a set E which is an S, then all subsets automatically belong to S. Now of

course, P(X) is a hereditary sigma ring.

And now if you, as usual, if you take any intersection of hereditary sigma rings, it is
automatically hereditary. So, it is very easy to check because the intersection of sigma rings is
a sigma ring and the hereditary property. Again, it is very easy to check that it is. So, given E,
an arbitrary collection of subsets of X, there exists a smallest hereditary sigma ring

containing E: H(E), This is called the hereditary sigma ring generated by E.

So, that is the notation. Now, if you take all sets, which can be covered by a countable

number of sets in E that means, so this,
{A: A c Ui=1ooAi, AL_ € E} is a hereditary sigma ring, and therefore it contains
H(E).
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So, the conclusion is every element in H(E) can be covered by a countable number of

elements of E.

(Refer Slide Time: 05:35)

> ey
S i

3

D X () Mam-la\a iy & moladn B X An adentid
weodevak ga #NG‘Q_L‘ collad | om  audes wespusg

m

=% 1
g

wofenae N BeH
GF =0
(h EeR, Fek = P 2@

o

O ot oredditchy § £, w1 2 (D8)

[N

© 4
Z¥ (s

P 0B wean  collll T -Flie rd @uﬁ EelR amle gk

Ay oo R oA siliindt wie Pk suden nasn.
E cVE pan<ie.

FY

So, now we come to a definition, another definition.

Definition: So, X non-empty set, and H a hereditary o-ring of subsets of X. An extended real

valued function, p * on H is called an outer measure if
(Hhu*(E)=0,VE €EH,

@) u*(¢d) =0,

B)VEEeH FCcE=p*(F) < u* (E),
(4) Countable subadditivity: {E} _ “inH = p* (U_"E) < ¥ p* (E).
- h i=1

So, this looks like a measure, but there are some differences.



First 2 properties are just the properties of a measure. And then third is a consequence of the
properties of measure, which you are now putting in here, because that was got from the a
countable additivity, which we do not have now. And it is a countable additive, which
involves disjoint sets and so on. Now, we are saying it is subadditive, which is also a property

of a measure.
So, it has some properties of a measure, but it is not necessarily a measure.

So, then an outer measure is called o-finite, if every E € H can be covered by a countable

collection of sets in H, with finite out of measure. So, E C UiZIwE s M * (E l,) < oo Vi.
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Just as we had sigma finite measures, we can have sigma finite outer measures. So, why are
we defining this? Outer measures occur very naturally when we try to extend the measure.

So, we have the following proposition.

Proposition: X is a non-empty set, and R a ring on X, and p is a measure on R. So, now you

take E € H(R), the smallest hereditary sigma ring containing R.



Define p * (E) = inf{ } u(Ei) t E C Ui_looEi, E € R}. Then p * is an outer measure and it
i=1 -

extends to p . Further, if p is sigma finite, so is pu *.

proof. Step 1. So, p *> 01is obvious because you are taking an infimum of non-negative

things and therefore it is non-negative.

Now, let us take E € R, then E € E. So, therefore you have p * (E) < u(E).

So, now on the other hand, if you are given E C UizlmE » then by subadditivity of a measure

WE) < X wE) = wE) < u* (E).
i=1
=>VE € R, u* (E) = wE), ie., n *extends to .
In particular, pu * (¢p) = 0.
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Step 2: Suppose F c E, E € H(R). Then of course, it is a hereditary sigma ring. So, F is

also in H(R). So, every countable cover (from R) of E is also a cover for F. So, you are

number of covers for F is more than the number of covers for E, and therefore automatically

this in implies that u * (F) < p * (E).

Step 3: We prove countable subadditivity: So, let us take E C Uizle iy E, E € H(R). So,

if there exists an 1 such that p * (E l,) = oo, thenclearlyp * (E) < ) p * (E l_).
i=1

So, therefore assume p * (E l_) < o0, Vi. Given any € > 0, there exists E y € R, j equals 1

[ee]

to infinity, such that E . C Ui=1°°E i and you have ), u(EL_]_) < u*(E i) + ?

Jj=1



This is just the definition of the infimum. So, you are defining it to be the infimum over all
countable covers. So, I can find a countable cover, which is bounded by mu star E, plus any

small quantity I like, and I am going to call that quantity epsilon by 2 power i.
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Then you have E Uizloou, .

i “E " So, this is a countable cover with E i € R, for all i,j and

B ST EUE) ST E) D =T ut(E) + e

i=1j=1 i=1
Su*(E) S Y p*(E)
i=1

Step 4: We now take p is o-finite, E C Uz=1mEi’ Ei € R, E € H(R). So, you can write it
as E C U_, szl El_j, u(Eij) < oo,
So, you have a countable cover of E, with the Eij and, but p * (E ij) = uw(E L,j) < oo,

So, this completes the proof of the proposition. So, all questions have been proved.
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So, now an example.

Example: So we said p o- finite = p * o- finite. So, the question is p finite, does it imply or
not that p * is finite but p * is still sigma finite ? Because of the previous proposition,

therefore finiteness does not extend, but sigma finiteness exists. So, what is an example for
this?

So, let us take X = N, R= equals ring of finite subsets, pu is counting measure. Then of
course, W is finite. Countable number union of singletons is in H(R) because H(R) is a sigma
ring, which contains R singletons are all in R. Therefore, any a countable N will be in

singleton. So, this implies N € H(R) . So, it is a hereditary sigma ring. So, this implies that

H(R) = P(N). Now, if E is an infinite set, clearly u * (E) = oo. Because it is, you have to
cover it by an infinite number of sets, countable numbers. Each one will have at least measure
1. And therefore, the infimum will also be plus infinity. So, p * (E) of E will always be plus
infinity. So, this implies that p * (E) is not finite, but it is sigma finite.

So, we have a very natural way in which given a measure on a ring, there is a hereditary
sigma ring and an outer measure. Now, given a hereditary sigma ring and an outer measure,
we will see how to extract and measure out of it. That will be the thing, which we will see

next.



