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So, now, we are going to see a really beautiful application of all that we have learned so far:

integration and convergence and so on and so forth and through a very classical theorem from

analysis which you have already seen shortly in a course on real analysis.
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So, we will prove that Weierstrass’s theorem: tells you that any continuous function on a

bounded interval can be uniformly approximated by a sequence of polynomials. So, this is the

Weierstrass approximation theorem. And so, let us try to prove this in a completely different

way using the notions of integration which we have been seeing.

So, we work with the interval and if we denote by the Dirac𝑋 = [0, 1] 𝑥
0

∈ 𝑋,  δ
𝑥

0

=

measure concentrated at , recall so, this means 1 if and 0 if , so𝑥
0

δ
𝑥

0

(𝐸) = 𝑥
0

∈ 𝐸 𝑥
0

∉ 𝐸

this is the Dirac measure and of course, sigma algebra is the entire power set every set is

measurable.

So, now, we take and and then we define𝑡 ∈ [0, 1] 𝑛 ∈ ℕ, 𝑋 = [0, 1],  𝑆 = 𝑃(𝑋)

µ𝑡
𝑛

=
𝑘=0

𝑛

∑ 𝑛𝐶
𝑘
𝑡𝑘(1 − 𝑡)𝑛−𝑘δ 𝑘

𝑛
;  𝑛𝐶

𝑘
= 𝑛!

𝑘!(𝑛−𝑘)! .



So, let us so, we have 𝑓
𝑖
(𝑥) = 𝑥𝑖,  𝑖 = 0, 1, 2.  𝑓

0
≡ 1,  𝑓

1
(𝑥) = 𝑥,  𝑓

2
(𝑥) = 𝑥2.

So, we can compute all the integrals of these functions with respect to this measure. So, it is

a good exercise in computing (())(4:02) so, what is ? So,µ𝑡
𝑛
(𝑋)

µ𝑡
𝑛
(𝑋) =

𝑋
∫ 𝑓

0
𝑑µ𝑡

𝑛
=

𝑘=0

𝑛

∑ 𝑛𝐶
𝑘
𝑡𝑘(1 − 𝑡)𝑛−𝑘 = (𝑡 + 1 − 𝑡)𝑛 = 1.  
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Now, let us compute the integral

𝑋
∫ 𝑓

1
𝑑µ𝑡

𝑛
=

𝑘=0

𝑛

∑ 𝑛𝐶
𝑘
𝑡𝑘(1 − 𝑡)𝑛−𝑘 𝑛

𝑘                     ;
𝑋
∫ 𝑓

1
𝑑δ 𝑘

𝑛
= 𝑓

1
( 𝑘

𝑛 ) = 𝑘
𝑛 .  

= 𝑡
𝑘=1

𝑛

∑ 𝑛𝐶
𝑘
𝑡𝑘−1(1 − 𝑡)𝑛−𝑘 𝑛

𝑘

= 𝑡
𝑘=1

𝑛

∑ 𝑛𝐶
𝑘
𝑡𝑘−1(1 − 𝑡)(𝑛−1)−(𝑘−1) 

= 𝑡
𝑘=1

𝑛

∑ 𝑛−1𝐶
𝑘−1

𝑡𝑘−1(1 − 𝑡)(𝑛−1)−(𝑘−1)

= 𝑡
𝑘=0

𝑛−1

∑ 𝑛−1𝐶
𝑘−1

𝑡𝑘−1(1 − 𝑡)(𝑛−1)−(𝑘−1) = 𝑡(𝑡 + 1 − 𝑡)𝑛−1 = 𝑡.
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So, we get
𝑋
∫ 𝑓

1
𝑑µ𝑡

𝑛
= 𝑡.

So, similarly, you can make the calculation so, I will allow you to check this by just playing

around with the binomial coefficients. So,

𝑋
∫ 𝑓

2
𝑑µ𝑡

𝑛
=

𝑘=0

𝑛

∑ 𝑛𝐶
𝑘
𝑡𝑘(1 − 𝑡)𝑛−𝑘( 𝑛

𝑘 )2 = 1
𝑛 [(𝑛 − 1)𝑡2 + 𝑡].

So, now, if and therefore𝑓(𝑥) = (𝑥 − 𝑡)2 = 𝑓
2
(𝑥) − 2𝑡𝑓

1
(𝑥) + 𝑡2𝑓

0
(𝑥)

𝑋
∫ 𝑓 𝑑µ𝑡

𝑛
= 𝑡−𝑡2

𝑛 .

Now, the maximum value of on You can check.𝑡−𝑡2

𝑛 [0, 1] = 1
4𝑛 .
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Lemma: Let Let ,𝑡 ∈ [0, 1] ,  𝑛 ∈ ℕ 𝑓𝑖𝑥𝑒𝑑. ϵ > 0

𝐴
ϵ

= {𝑥 ∈ 𝑋:  |𝑥 − 𝑡| ≥ ϵ}.

Then uniformly w.r. toµ𝑡
𝑛
(𝐴

ϵ
) → 0 𝑎𝑠 𝑛 → ∞ 𝑡.

proof: So, we are going to take
𝐴

ϵ

∫(𝑥 − 𝑡)2𝑑µ𝑡
𝑛

≤
𝑋
∫(𝑥 − 𝑡)2𝑑µ𝑡

𝑛

⇒ ϵ2µ𝑡
𝑛
(𝐴

ϵ
) ≤

𝑋
∫(𝑥 − 𝑡)2𝑑µ𝑡

𝑛
= 𝑡−𝑡2

𝑛 ≤ 1
4𝑛 .

uniformly w.r. to t.⇒ µ𝑡
𝑛
(𝐴

ϵ
) ≤ 1

4ϵ2
1
𝑛 → 0 𝑎𝑠 𝑛 → ∞ 
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Lemma: Let fixed. Then𝑓 ∈ 𝐶[0, 1],  𝑡 ∈ [0, 1]

𝑛 ∞
lim
→ 𝑋

∫ 𝑓𝑑µ𝑡
𝑛

= 𝑓(𝑡)

and convergence is uniform with respect to t.

Proof: so f continuous on is uniformly continuous. Given epsilon positive there[0, 1] ⇒  𝑓

exists delta positive such that So, you take|𝑥 − 𝑦| < δ ⇒ |𝑓(𝑥) − 𝑓(𝑦)| < ϵ.

𝐴
δ

= {𝑥 ∈ 𝑋:  |𝑥 − 𝑡| ≥ δ}.
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So, Then𝑓(𝑡) =
𝑋
∫ 𝑓(𝑡)𝑑µ𝑡

𝑛
.

|
𝑋
∫ 𝑓(𝑡)𝑑µ𝑡

𝑛
− 𝑓(𝑡)| = |

𝑋
∫(𝑓(𝑥) − 𝑓(𝑡))𝑑µ𝑡

𝑛
(𝑥)| ≤

𝑋
∫ |𝑓(𝑥) − 𝑓(𝑡)|𝑑µ𝑡

𝑛
(𝑥) = 𝐼

1
+ 𝐼

2
.

So, 𝐼
1

=
𝐴

δ

∫ |𝑓(𝑥) − 𝑓(𝑡)|𝑑µ𝑡
𝑛
(𝑥) ;  𝐼

2
=

𝐴
δ

𝑐
∫ |𝑓(𝑥) − 𝑓(𝑡)|𝑑µ𝑡

𝑛
(𝑥).

Now, let us assume that because it is a continuous function and|𝑓(𝑥)| ≤ 𝑀,  ∀ 𝑥 ∈ [0, 1] 

therefore, it is bounded. So,



𝐼
1

≤ 2𝑀µ𝑡
𝑛
𝐴

δ
≤ 2𝑀

4𝑛δ2 .

Now, 𝐼
2

≤ ϵµ𝑡
𝑛
(𝐴

δ
𝑐) ≤ ϵµ𝑡

𝑛
(𝑋) = ϵ.

So, now, given choose this fixes delta then choose capital N such that for allη > 0 ,  ϵ < η
2 ,  

we have . Then for all , you have So,𝑛 ≥ 𝑁 2𝑀

4𝑛δ2 < η
2 𝑛 ≥ 𝑁 𝐼

1
+ 𝐼

2
< η.

|
𝑋
∫ 𝑓(𝑡)𝑑µ𝑡

𝑛
− 𝑓(𝑡)| < η,  ∀ 𝑛 ≥ 𝑁 ,  𝑁 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 ϵ.

So, that proves the lemma.
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Remark: In this proof what we do so, we split so remark to estimate the integral we split it

into integrals into I_1 and I_2, I_1 was on we know very little about the integrant but𝐴
δ

measure of is small. I_2 integrant is small and measures of𝐴
δ

µ(𝐴
δ

𝑐) ≤ 1.

So, we split the integral on 1, we have information on the measure of the set on the other we

have information on the integral. So, using these two inter complementary information we are

able to estimate the integral this kind of divide and rule policy is very helpful it is a very

useful technique to know. So, this is a technique which can come in useful whenever you

want to estimate some intervals.

So, now
𝑋
∫ 𝑓(𝑡)𝑑µ𝑡

𝑛
=

𝑘=0

𝑛

∑ 𝑛𝐶
𝑘
𝑡𝑘(1 − 𝑡)𝑛−𝑘𝑓( 𝑘

𝑛 ) → 𝑓(𝑡) 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑎𝑠 𝑛 → ∞ .

Now, this polynomial Bn of t which is sigma k equals 0 to n, n ck t power k, 1 minus t power

n minus k f of k by n these are called the Bernstein polynomials, so for each n, you have a

polynomial. So, these are called the Bernstein partners. So, we have proved simultaneously

two things, one is that you can approximate continuous function uniformly by a sequence of

polynomials and we have also identified what those polynomials are and so, all this has come

simply by discussing integration with respect to the Dirac measure suitably.
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So, this is a nice application. So, now, finally, I want to talk a little about probability theory,

so we will try to give a dictionary between measure theory and the theory of probability. So,

the probability space is a measure space and is called the(Ω,  𝐵,  𝑃),  𝑤ℎ𝑒𝑟𝑒 𝑃(Ω) = 1  Ω

sample space, B the sigma algebra equals collection of events.

So, if then the probability of event A. So, now, if is an event, then𝐴 ∈ 𝐵,  𝑃(𝐴) =  𝐵 ∈ 𝐵

you define a sigma algebra on subsets of B:𝐵
𝐵

𝐵
𝐵

= {𝐴 ∩ 𝐵:  𝐴 ∈ 𝐵}.



We have already done this when defining the integral over subsets, so, BB is nothing but a

set of all intersections A intersection B, A is an event, and you define a probability on B

intersection A intersection B so BB of A intersection we already have done this before.

So, this is nothing but the usual probability of A intersection B it says, but we want to have

this as a probability measure. So,

𝑃
𝐵

(𝐴 ∩ 𝐵) = 𝑃(𝐴∩𝐵)
𝑃(𝐵) ;  𝑃

𝐵
(𝐵) = 1.

So, is called the conditional probability. So, probability of A occurring given B given that𝑃
𝐵

B is happening, what is the probability of A also happening and that is precisely the

probability measure the probability of A intersection B and then divided by the probability of

B and you have this.

So, you have .𝑃
𝐵

(𝐴 ∩ 𝐵) = 𝑃(𝐴|𝐵)

Now, two events A and B are independent if so, it does not matter whether𝑃(𝐴|𝐵) = 𝑃(𝐴).

B happens or B does not happen, it does not affect the occurrence of A.
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And therefore, this means that . Now, the random variable (X) is𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)

nothing but a measurable function (f) only in probability theory we use the notation of here.

So, instead we use value x, so X is a random variable, so, we use the symbol X for the set.

Now, the set is an omega that is a sample space and therefore, random variables are defined

by this. So, the expected value or mean of X is 𝐸(𝑋) =
Ω
∫ 𝑋𝑑µ.

Point wise convergence a.e. of a sequence of random variables then we say𝑋
𝑛

→ 𝑋,  𝑋
𝑛

→ 𝑋

almost surely. So, if in measure then we say in probability. So, it is𝑋
𝑛

→ 𝑋 𝑋
𝑛

→ 𝑋

probability really just measure theory no, because between there is something which is in

probability which does not come in study in measure theory.
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So, namely, the distinguishing feature of probability is independence of random variables. So,

X, Y random variables independent if for every pair of Borel sets A and B, we have

𝑃(𝑋−1(𝐴) ∩ 𝑌−1(𝐵)) = 𝑃(𝑋−1(𝐴))𝑃(𝑌−1(𝐵)).

So, this is the thing that is whether the random variable X takes value in A is independent of

the fact that the random variable of Y takes the value in B. So, this is what we call

independence of random variables.

Similarly, distribution function of a random variable X so, this is equal to probability, so,

probability of𝐹(𝑡) = 𝑋 ≤ 𝑡 = 𝑃(𝑋−1(− ∞,  𝑡]).

So, X and Y are identically distributed if they have the same distribution function so,

sequences of independent identically distributed random variables is a very important study

in the stochastic process. A stochastic process is nothing but a family of random variables.

So, it is your family so you study a family of measurable functions at the same time. So, there

is a second index which will come in and therefore, you have so this is some kind of brief

dictionary which tells you how to understand the probabilistic language in terms of measure

theoretic language. So, now with this I will conclude this chapter on integration and we will

do some exercises before we leave it altogether.


