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So, we now compare the Riemann and Lebesgue integrable. So, on the real line R we have

two integrations, one is Riemann integration and this is the Lebesgue integration. First is the

Riemann integral definition. So, Riemann integral f bounded on of finite interval and if[𝑎, 𝑏]

it exists you call it this notation for the Riemann integral.
𝑎

𝑏

∫ 𝑓(𝑥)𝑑𝑥



Now, if you want to extend to unbounded functions or infinite intervals you may have

suitable limit processes and the integral may or may not exist. Lebesgue integral on the other

hand is defined for all non-negative measurable functions and integrable functions and

integral can be finite or infinite. If it is finite we say Lebesgue integrable of course, the

Lebesgue integrable is denoted by integral f d m 1 over the say E on which you are

integrating.

Now, for instance, we have seen in the past that there exists a Riemann sequence of Riemann

integrable functions whose limit may not be the Riemann integrable. On the other hand, the

typical example of this is the characteristic function of Q intersection 0, 1 So, this is Riemann

integrable sorry this is not Riemann integrable.

On the other hand this is in fact, the characteristic function of a countable set and the

Lebesgue integrable is just a measure of the countable set which is 0. So, but integral chi Q

intersection 0, 1 dm 1 equal to 0. So, it exists. So, we have, now we asked the question that if

you have a bounded function which is Riemann integrable, is it also Lebesgue integrable?

And if so, are the two integrals equal.

For the health of the theory, it better be so because if you have two different methods of

integration and you get different results, that is a very uncomfortable situation and it is not

good. So, we have to show that if you have a bounded function, so, bounded function on a, b

finite interval Riemann integrable implies Lebesgue integrable and both integrals coincide.

So, this is the question which we want to ask and we hope that the answer will be affirmative.

So, let us proceed. So, how do you define it? So, finite interval in and then P is a[𝑎, 𝑏] ℝ

partition. So, So, the points are called the nodes𝑃 = {𝑎 = 𝑥
0

< 𝑥
1

<.... < 𝑥
𝑛

= 𝑏}. {𝑥
𝑖
}

𝑖=0
𝑛

of P. So, some finite number.

Then This is called the mesh size of P.∆𝑃 =
1≤𝑖≤𝑛
max (𝑥

𝑖
− 𝑥

𝑖−1
).
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So, a partition is said to be refinement of P if the nodes of P are contained in the nodes of𝑃' 

. So, you have a partition here.𝑃'

So, now, let be a bounded function. Consider a sequence of partitions𝑓: [𝑎, 𝑏] → ℝ {𝑃
𝑘
}

𝑘=1
∞ 

of such that[𝑎, 𝑏]

(1) for every k, is a refinement of .𝑃
𝑘+1

𝑃
𝑘

(2) ∆𝑃
𝑘

→ 0 𝑎𝑠 𝑘 → ∞.

So, define where𝑈
𝑘

= 𝑓(𝑎) +
𝑖=1

𝑛

∑ 𝑀
𝑖
χ

(𝑥
𝑖−1

,𝑥
𝑖
]
,  𝐿

𝑘
= 𝑓(𝑎) +

𝑖=1

𝑛

∑ 𝑚
𝑖
χ

(𝑥
𝑖−1

,𝑥
𝑖
]
 ,

𝑀
𝑖

= sup
𝑡∈(𝑥

𝑖−1
,𝑥

𝑖
]
𝑓(𝑡) ,  𝑚

𝑖
= inf

𝑡∈(𝑥
𝑖−1

,𝑥
𝑖
]
𝑓(𝑡) .  

Then if you recall the definition of the Riemann integration you have the upper darboux sum

and lower darboux sum.

𝑈(𝑃
𝑘
, 𝑓) =

𝑖=1

𝑛

∑ 𝑀
𝑖
(𝑥

𝑖
− 𝑥

𝑖−1
) =

(𝑎,𝑏]
∫ 𝑈

𝑘
𝑑𝑚

1
 ;  𝐿(𝑃

𝑘
, 𝑓) =

𝑖=1

𝑛

∑ 𝑚
𝑖
(𝑥

𝑖
− 𝑥

𝑖−1
) =

(𝑎,𝑏]
∫ 𝐿

𝑘
𝑑𝑚

1
.  

Now, pk plus 1 refinement of Pk for every k, so, what does that imply? That implies

𝐿
1
(𝑥) ≤ 𝐿

2
(𝑥) ≤... ≤ 𝑓(𝑥) ≤... ≤ 𝑈

2
(𝑥) ≤ 𝑈

1
(𝑥).

Because you are taking the supremum over smaller intervals. So, the supremum will be less

and here you are doing infimum over smaller intervals. So, the infimum will be more. So, that



is why U2 L2 is bigger than L1 U2 bigger than you 1 and in general for every k you will have

this inequality here.
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Theorem: bounded Riemann Integrable function. Then f is Lebesgue𝑓: [𝑎, 𝑏] → ℝ,  

integrable and
𝑎

𝑏

∫ 𝑓(𝑥)𝑑𝑥 =
[𝑎,𝑏]
∫ 𝑓𝑑𝑚

1
.

proof: With above notations you have is decreasing sequence, bounded below{𝑈
𝑘
(𝑥)}

𝑘=1
∞ 

and is increasing sequence, bounded above. Hence both are convergent.{𝐿
𝑘
(𝑥)}

𝑘=1
∞ 

So, let us take the limit. So, and Then this implies that𝐿
𝑘
(𝑥) → 𝐿(𝑥) 𝑈

𝑘
(𝑥) → 𝑈(𝑥).

Also, f bounded implies is finite. Therefore, by dominated𝐿(𝑥) ≤ 𝑓(𝑥) ≤ 𝑈(𝑥).
[𝑎,𝑏]
∫ 𝑈

1
𝑑𝑚

1

convergence theorem,

.
[𝑎,𝑏]
∫ 𝑈

𝑘
𝑑𝑚

1
→

[𝑎,𝑏]
∫ 𝑈 𝑑𝑚

1
  𝑎𝑛𝑑    

[𝑎,𝑏]
∫ 𝐿

𝑘
𝑑𝑚

1
→

[𝑎,𝑏]
∫ 𝐿𝑑𝑚

1
 

Now, f is Riemann integrable. So, you have that the upper and lower and lower darboux sums

converge to the Riemann integral. Therefore, what does it mean? That means

𝑎

𝑏

∫ 𝑓(𝑥)𝑑𝑥 =
[𝑎,𝑏]
∫ 𝑈𝑑𝑚

1
=

[𝑎,𝑏]
∫ 𝐿𝑑𝑚

1
.

But also, U is integrable because f is and therefore, you also have that 𝑈(𝑥) = 𝐿(𝑥)  𝑎. 𝑒.



So, So, this means f is equal to U or L almost everywhere that𝑈(𝑥) = 𝑓(𝑥) = 𝐿(𝑥)  𝑎. 𝑒.

one f is Lebesgue integrable and

[𝑎,𝑏]
∫ 𝑓𝑑𝑚

1
=

[𝑎,𝑏]
∫ 𝑈𝑑𝑚

1
=

[𝑎,𝑏]
∫ 𝐿𝑑𝑚

1
=

𝑎

𝑏

∫ 𝑓(𝑥)𝑑𝑥.

So, that is the proof.
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Theorem: bounded function. Then f is Riemann integrable if and only if f is𝑓: [𝑎, 𝑏] → ℝ 

continuous almost everywhere.

proof. So, again use preceding notations. So, assume is not a node of any P_k. So,𝑥 ∈ [𝑎, 𝑏] 

now nodes of Pk are finite. So, union over k 10 nodes of Pk is countable. Hence measure 0.

So, we are taking x outside this set of measure 0 and now you have f is continuous at x if and

only if because what are U, L and all that, U_k comes from the𝑈(𝑥) = 𝑓(𝑥) = 𝐿(𝑥) 

maximum.

So, look at the definitions of these things Uk Lk and definitions of Mi and mi. So, you have

that Uk and Lk converse to U and L and therefore here and therefore, you have this condition

here. Now, if you have continuity then these three will be the same and if these three are same



then obviously, the function is continuous also. So, you have the f is continuous at a point x if

and only if U equals f equals Lx almost everywhere.

Now, from proof of the proceeding theorem, if f Riemann integrable this implies U equals f

equals L almost everywhere that this f is continuous almost everywhere. Now, conversely f

bounded and continuous almost everywhere, this implies that U equals f equal to L almost

everywhere.

So, this means that integral since integral Uk converges to U and integral Lk converges to L

integral L. So, those two integrals are equal and consequently given epsilon this is less than

epsilon for all k sufficiently large and that is one of the conditions for Riemann integrable,

that is mod U Pk f minus L Pk f is less than epsilon k large and that is implies f is Riemann

integrable one of the criteria one of the alternative definitions of Riemann integrable

(())(22:56) is that given any sequence of partitions you have that you can do this.

So, this proofs, so, we have proved that if a function is Riemann integrable if and only if it is

continuous almost everywhere and if it is Riemann integrable and bounded then it is

Lebesgue integrable is the same as Riemann integral, very good, and all this was done in a

finite interval a, b.
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Example: Not true if the interval is infinite. Because here we are going to define the

Riemann integral in terms of some suitable limit processes. So, let us give an example: let us

take and you let(0, ∞) ⊂ ℝ 𝑓(𝑥) = sin(𝑥)
𝑥 .

So, this is standard exercise contour integration. You can look at any complex analysis book.

So, I will force for instance f is Riemann integrable on and(0, ∞)
0

∞

∫ 𝑓(𝑥)𝑑𝑥 = π
2 .

But f is not Lebesgue integrable. So, we want to show that f is not Lebesgue integrable. So,

we have .𝐼
𝑛

= [𝑛π + π
4 ,  𝑛π + π

2 ],   𝑛 ∈ ℕ



So, these are all disjoint intervals on . So you have𝐼
𝑛

| sin(𝑥)| ≥ 1
2

 𝑎𝑛𝑑 |𝑥| ≤ (2𝑛 + 1) π
2 .

So, for we have So,𝑥 ∈ 𝐼
𝑛
,  | sin(𝑥)

𝑥 | ≥ 2
π

1
2𝑛+1 .

which is a divergent series.
(0,∞)

∫ |𝑓|𝑑𝑚
1

≥
𝑛=1

∞

∑
𝐼

𝑛

∫ |𝑓|𝑑𝑚
1

≥ 1
2 2 𝑛=1

∞

∑ 1
2𝑛+1 ,  

And therefore, you have
(0,∞)

∫ |𝑓|𝑑𝑚
1

=+ ∞.

So, f is not Lebesgue integrable and (())(27:42). So now, the next thing we will do is to see a

couple of instances of how we use this fact about Riemann and Lebesgue integrals being the

same for bounded functions on bounded intervals and use that to study the integrability of

functions on the real line and then also try to compute those integrals.


