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So, last time we looked at the monotone convergence theorem, which said that if you have a

sequence of non-negative monotonic functions monotonically increasing sequence of

functions sets then you have fn goes to fn then you have integral f d Mu over X is limit n

tending to infinity integral fn d Mu over X.

So, this is a really simple theorem to apply: you need a monotonically increasing sequence of

non-negative functions and then you are through. Of course, as I said both sides could be

infinite and if 1 side is finite then the other side is finite and the two equal.
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So, next we have a similar result based on the monotonic theorem again a very useful result is

called Fatou’s Lemma.

Theorem: (Fatou’s lemma) So, measure space, and non-negative sequence of(𝑋, 𝑆, µ) {𝑓
𝑛
} 

measurable functions. Then
𝑋
∫(

𝑛 ∞
lim
→

inf 𝑓
𝑛
)𝑑µ ≤

𝑛 ∞
lim
→

inf
𝑋
∫ 𝑓

𝑛
𝑑µ .

proof: Set Then of course is measurable non-negative and𝑔
𝑛

= inf
𝑖≥𝑛

𝑓
𝑖
(𝑥),  𝑥 ∈ 𝑋. 𝑔

𝑛

𝑔
𝑛

↑
𝑛 ∞
lim
→

inf 𝑓
𝑛
.

Therefore, by the monotone convergence theorem, you have

𝑋
∫(

𝑛 ∞
lim
→

inf 𝑓
𝑛
)𝑑µ =

𝑛 ∞
lim
→ 𝑋

∫ 𝑔
𝑛
𝑑µ ≤

𝑛 ∞
lim
→

inf
𝑖≥𝑛

𝑋
∫ 𝑓

𝑛
𝑑µ =

𝑛 ∞
lim
→

inf
𝑋
∫ 𝑓

𝑛
𝑑µ.

So, this proves Fatou’s lemma.
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Example: Strict inequality is possible in Fatou’s lemma. So, let us take equipped𝑋 = ℝ 

with Lebesgue measure and then you say So, then𝑓
𝑛

= χ
[𝑛,𝑛+1]

. 𝑓
𝑛
(𝑥) → 0 𝑎𝑠 𝑛 → ∞.

Therefore, So, you have But if you look at
𝑛 ∞
lim
→

inf  𝑓
𝑛

= 0. 0 =
ℝ
∫

𝑛 ∞
lim
→

inf  𝑓
𝑛
𝑑𝑚

1
.

and therefore,
ℝ
∫  𝑓

𝑛
𝑑𝑚

1
= 𝑚

1
([𝑛, 𝑛 + 1]) = 1

0 =
ℝ
∫

𝑛 ∞
lim
→

inf  𝑓
𝑛
𝑑𝑚

1
< 1 =

𝑛 ∞
lim
→

inf
𝑋
∫ 𝑓

𝑛
𝑑µ.

So, you have that it is possible to have strictly inequality in Fatou’s lemma.



So, the next proposition is a variation of the monotone convergence theorem.

Proposition: So, measure space, sequence of non-negative extended real(𝑋, 𝑆, µ) {𝑓
𝑛
} 

valued functions, for all x in X, assume converges and𝑓
𝑛
(𝑥) → 𝑓(𝑥) 0 ≤ 𝑓

𝑛
(𝑥) ≤ 𝑓(𝑥).

Then,
𝑛 ∞
lim
→ 𝑋

∫ 𝑓
𝑛
𝑑µ =

𝑋
∫ 𝑓𝑑µ.  
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proof: So, you apply Fatou’s lemma and you have that so,

𝑋
∫ 𝑓𝑑µ =

𝑋
∫

𝑛 ∞
lim
→

inf 𝑓
𝑛
𝑑µ ≤

𝑛 ∞
lim
→

inf
𝑋
∫ 𝑓

𝑛
𝑑µ ≤

𝑛 ∞
lim
→

sup
𝑋
∫ 𝑓

𝑛
𝑑µ ≤

𝑋
∫ 𝑓𝑑µ.

⇒
𝑛 ∞
lim
→

inf
𝑋
∫ 𝑓

𝑛
𝑑µ =

𝑛 ∞
lim
→

sup
𝑋
∫ 𝑓

𝑛
𝑑µ =

𝑋
∫ 𝑓𝑑µ.

⇒  
𝑛 ∞
lim
→ 𝑋

∫ 𝑓
𝑛
𝑑µ =

𝑋
∫ 𝑓 𝑑µ.

That proves the theorem.

So, earlier we showed that if is a simple function defines a measureϕ ≥ 0 ⇒ ν(𝐸) =
𝐸
∫ ϕ𝑑µ

on S.
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So, now, we are going to generalize this result in the following proposition:

Proposition: measure space, f non-negative extended real valued measurable(𝑋, 𝑆, µ) 

function. Define ν(𝐸) =
𝐸
∫ 𝑓𝑑µ ,  ∀ 𝐸 ∈ 𝑆.

Then is a measure on S and if g is any extended real valued non-negative measurableν

function we have
𝑋
∫ 𝑔𝑑µ =

𝑋
∫ 𝑔𝑓𝑑µ.  (𝑑ν = 𝑓𝑑µ). ........ (*)
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proof: So, clearly and , and therefore, we have to check so,ν(ϕ) = 0 ν ≥ 0

disjoint.  So, now So now, if you take𝐸 = ∪
𝑖=1

∞𝐸
𝑖
,  𝐸

𝑖
∈ 𝑆,  𝐸

𝑖
χ

𝐸
=

𝑖=1

∞

∑ χ
𝐸

𝑖

.

ν(𝐸) =
𝐸
∫ 𝑓𝑑µ =

𝑋
∫ 𝑓χ

𝐸
𝑑µ =

𝑋
∫(

𝑖=1

∞

∑ 𝑓χ
𝐸

𝑖

)𝑑µ =
𝑖=1

∞

∑
𝑋
∫ 𝑓χ

𝐸
𝑖

𝑑µ =
𝑖=1

∞

∑
𝐸

𝑖

∫ 𝑓𝑑µ =
𝑖=1

∞

∑ ν(𝐸
𝑖
).

So, this implies that is a measure. So now, we want to establish (*). So, assumeν

Then𝑔 = χ
𝐸

,  𝐸 ∈ 𝑆.
𝑋
∫ 𝑔𝑑µ = ν(𝐸) =

𝐸
∫ 𝑓𝑑µ =

𝑋
∫ 𝑓χ

𝐸
𝑑µ =

𝑋
∫ 𝑓𝑔𝑑µ.

So, (*) is OK for characteristic functions. Now, you take 𝑔 =
𝑖=1

𝑘

∑ α
𝑖
χ

𝐴
𝑖

,  𝐴
𝑖

∈ 𝑆,  α
𝑖

≥ 0.

Then we know that if you have a finite sum of non-negative functions then the integral of the

sum is the sum of the integral and alpha can come out. And therefore,

𝑋
∫ 𝑔𝑑µ =

𝑖=1

𝑘

∑ α
𝑖

𝑋
∫ χ

𝐴
𝑖

𝑑µ =
𝑋
∫ 𝑓

𝑖=1

𝑘

∑ α
𝑖
χ

𝐴
𝑖

𝑑µ =
𝑋
∫ 𝑓𝑔𝑑µ.

So, (*) is Ok for non-negative, simple functions. So, now, if is measurable, so, there𝑔 ≥ 0 

exists simple, and . So,ϕ
𝑛
 0 ≤ ϕ

𝑛
≤ 𝑔 ϕ

𝑛
↑ 𝑔

Now, phi n increases to g non-negative function, so, by the
𝑋
∫ ϕ

𝑛
𝑑µ =

 𝑋
∫ 𝑓ϕ

𝑛
𝑑µ.

monotone convergence theorem,
𝑋
∫ 𝑔𝑑µ =

𝑋
∫ 𝑓𝑔𝑑µ .

Therefore, this establishes the theorem.

So, this is a very important powerful technique like a proof machine: you prove something

for characteristic functions, use linearity to prove it for simple functions, use a suitable limit

theorem like the monotone convergence theorem to prove it for an arbitrary non-negative

function.

Now, if you want to do it further, we have not come to arbitrary functions yet, but in general

you know how what how the proof will go because he will take an arbitrary function break it

up as f plus and f minus for each of them you prove it because you know you can do it for



this and then take the difference, so that will be the idea, so, this is a very nice proof

technique, which you have.
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So, as I said already, we have said if the indefinite integral Nu could be witness f d Mu that

means . Now, when can you do so, and you have
𝑋
∫ 𝑔𝑑µ =

𝑋
∫ 𝑓𝑔𝑑µ

. (**)ν(𝐸) =
𝐸
∫ 𝑓𝑑µ

So, given two measures and , when can you write this is the third existing episode givenν µ ν

and measures does there exist if such a (**) is true.µ

So, this is the content of the Radon Nikodym theorem. When you can do this we will see that

much-much later in this course. So, this is a particular case which we have seen.


