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So, we will now prove the first important limit theorem. So, this is theorem called the

monotonic convergence theorem. So,

Theorem: is a measure space and a sequence of non-negative(𝑋, 𝑆, µ) 𝑓
𝑛{ }

𝑛=1

∞

measurable functions defined on such that for every we have𝑋 𝑥 ∈ 𝑋

(i) 0 ≤ 𝑓
1
(𝑥) ≤ 𝑓

2
(𝑥) ≤  .  .   .  .  ≤ 𝑓

𝑛
(𝑥) ≤  .  .  .

(ii) 𝑓
𝑛
(𝑥) → 𝑓(𝑥),                           

Then
𝑋
∫ 𝑓

𝑛 
𝑑µ →

𝑋
∫ 𝑓 𝑑µ

So, we are having the integral limit of the integrals is the integral of the limit. So, this is the

you can interchange the integration is a limiting process by itself we also have pointwise



limits and integral of the, so you can interchange the two limit process the limit of the

integrals is the same as the integral of the limit.

In other words a limit can go inside the integral side. So,

Proof, so you let α = 𝑠𝑢𝑝
𝑛

𝑋
∫ 𝑓

𝑛
 𝑑µ 

So, we need to show in fact . So, since you have a increasing sequence you haveα =
𝑋
∫ 𝑓  𝑑µ

0 ≤
𝑋
∫ 𝑓

1
 𝑑µ ≤

𝑋
∫ 𝑓

2
 𝑑µ ≤  .  .  .  ≤

𝑋
∫ 𝑓

𝑛
 𝑑µ .  .  .

and you also have is increasing sequence and so, for all n.𝑓
𝑛{ }

𝑛=1

∞ 𝑓
𝑛

≤ 𝑓 

So, . So, this is an upper bound for all these things and therefore, you  
𝑋
∫ 𝑓

𝑛
 𝑑µ ≤

𝑋
∫ 𝑓 𝑑µ

have that . So, we have to show the converse.α ≤
𝑋
∫ 𝑓 𝑑µ

(Refer Slide Time: 3:33)





So, now, , be a fixed constant and non-negative simple function such that0 < 𝑐 < 1 φ

. So, define .0 ≤ φ ≤ 𝑓 𝐸
𝑛

= 𝑥 ∈ 𝑋 :  𝑓
𝑛
(𝑥) ≥ 𝑐φ(𝑥){ }

Now, is of course measurable and you have that𝐸
𝑛

,𝐸
1

⊂ 𝐸
2

⊂  .  .  .  ⊂ 𝐸
𝑛

⊂  .  .  .  

because is an increasing sequence, so if then f and x is bigger than that𝑓
𝑛

𝑥 ∈ 𝐸
𝑛

𝑐φ(𝑥)

means, that means , so is an increasing sequence. So, there𝑓
𝑛+1

(𝑥) ≥ 𝑐φ(𝑥) 𝑥 ∈ 𝐸
𝑛+1

𝐸
𝑛

are two possibilities for .𝑥 ∈ 𝑋

So, either this implies for all x and and you have in this case all𝑓(𝑥) = 0 𝑓
𝑛
(𝑥) φ(𝑥) = 0

this implies

or and since , this implies that .𝑥 ∈ 𝐸
1

𝑓(𝑥) > 0 φ ≤ 𝑓 ,    0 < 𝑐 < 1 𝑓(𝑥) ≥ 𝑐φ(𝑥)

Because this is the supremum there exists an n such that is greater or equal to𝑓(𝑥) 𝑓
𝑛
(𝑥)

greater or equal to , which implies that . So, in other words, this implies that𝑐φ(𝑥) 𝑥 ∈ 𝐸
𝑛

𝑋 =
𝑛=1

∞

⋃ 𝐸
𝑛
 ,      𝐸

𝑛
 ↑



Now,
𝑋
∫ 𝑓

𝑛
 𝑑µ ≥

𝐸
𝑛

∫ 𝑓
𝑛
 𝑑µ ≥ 𝐶

𝐸
𝑛

∫ φ 𝑑µ =  𝐶 ν(𝐸
𝑛
).

So, . But what do you know is a simple non-negative simple function. ν(𝐸
𝑛
) =

𝐸
𝑛

∫ φ 𝑑µ φ

So, defines a measure and therefore, if you pass to the limit in this ν(𝐸 ) =
𝐸
∫ φ 𝑑µ

relationship here, so, if you then you will get

.α ≥ 𝐶
𝑛 ∞
lim
→

ν(𝐸
𝑛
) = 𝐶ν(𝑋) = 𝐶

𝑋
∫ φ 𝑑µ

So, this is true for all phi through . Therefore, by definition , by0 ≤ φ ≤ 𝑓 α ≥ 𝐶
𝑋
∫ φ 𝑑µ

definition. Now, this is true for all . So, this implies that and that0 < 𝐶 < 1 𝐶 α ≥  
𝑋
∫ φ 𝑑µ

is what we wanted to prove.

So, we already have less than equal to and now we have greater than equal toα 𝑓 𝑑µ α 𝑓 𝑑µ

this implies and therefore, this is nothing but limit integral fn d mu over x, thisα =
𝑋
∫ 𝑓 𝑑µ

equal to also Sup integral fn d mu over n. So, this proves the monotone convergence theorem

very useful, very simple to apply, you need a sequence of non-negative measurable functions

which is increasing so, monotonic increasing then the limit of the integrals is the integral of

the limit.

So,

Remark: . So, this just implies that the . So, both sides
𝑋
∫ 𝑓 𝑑µ =+ ∞  𝑠𝑢𝑝

𝑋
∫ 𝑓

𝑛
 𝑑µ =+ ∞

say infinity and that is it.
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So, now we can give an application of this. So,

Proposition: measure space non-negative measurable functions. Define(𝑋, 𝑆, µ) {𝑓
𝑛
}

𝑓(𝑥) =
𝑛=1

∞

∑ 𝑓
𝑛
(𝑥) 

, then , measurable and𝑓 ≥ 0

𝑋
∫ 𝑓𝑑µ =

𝑛=1

∞

∑
𝑋
∫ 𝑓

𝑛
 𝑑µ .

So, it is a point vise sum and the integral is also the you can then take the if you take the

integral of , the integral and the summation sign can be interchange. So, this is again a𝑓

non-trivial observation works in working for non-negative functions.

Proof. So, you take , implies is measurable and then𝑔
𝑛

= 𝑓
1

+ 𝑓
2

+  .  .  .  + 𝑓
𝑛

𝑔
𝑛

𝑔
𝑛

increases to implies is measurable, we already saw the supremum of measurable𝑓 𝑔, 𝑓

functions is measurable. So, that makes it measurable. So, now, let us take nd simple,φ
𝑛
 𝑎 ψ

𝑛
 

and0 ≤ φ
𝑛

≤ 𝑓
1
 ,   0 ≤ ψ

𝑛
 ≤ 𝑓

2 
,   φ

𝑛
↑ 𝑓

1
 ,   ψ

𝑛
 ↑ 𝑓

2

we can always do this because of that theorem. Then we also have the is simpleφ
𝑛

+ ψ
𝑛

and increases to .𝑓
1

+ 𝑓
2



So, we have by the monotone convergence theorem, you have a

𝑛 ∞
lim
→ 𝑋

∫(φ
𝑛

+ ψ
𝑛
) 𝑑µ =

𝑋
∫(𝑓

1
+ 𝑓

2
) 𝑑µ

and
𝑋
∫ φ

𝑛
 𝑑µ →

𝑋
∫ 𝑓

1
 𝑑µ

𝑋
∫ ψ

𝑛
 𝑑µ →

𝑋
∫ 𝑓

2
 𝑑µ

But we also saw are simple, so simple, this implies a non-negative, so,φ
𝑛
 𝑎𝑛𝑑 ψ

𝑛
φ

𝑛
 𝑎𝑛𝑑 ψ

𝑛

this implies that

𝑋
∫(φ

𝑛
+ ψ

𝑛
) 𝑑µ =

𝑋
∫ φ

𝑛
 𝑑µ +

𝑋
∫ ψ

𝑛
 𝑑µ

And therefore, passing to the limit you get

𝑋
∫(𝑓

1
+ 𝑓

2
) 𝑑µ =

𝑋
∫ 𝑓

1
 𝑑µ +

𝑋
∫ 𝑓

2
 𝑑µ

So, by induction

.
𝑋
∫(𝑓

1
+  .  .  .  + 𝑓

𝑛
) 𝑑µ =

𝑖=1

𝑛

∑ 𝑓
𝑖
 𝑑µ

Now, this is the function and increases to all non-negative,𝑔
𝑛

= 𝑓
1

+  .  .  .  + 𝑓
𝑛

𝑔
𝑛

𝑓

therefore, again by the monotone convergence theorem,

.
𝑋
∫ 𝑓 𝑑µ =

𝑛 ∞
lim
→ 𝑖=1

𝑛

∑
𝑋
∫ 𝑓

𝑖
 𝑑µ =

𝑖=1

𝑛

∑
𝑋
∫ 𝑓

𝑖 
 𝑑µ

and that completes the proof. So, we will now do some examples in the next session.


