Measure and Integration
Professor S. Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Lecture No- 3
1.3 — Measures on rings

(Refer Slide Time: 0:15)

cg Mengores O RINGS .
_—

XLM;) R g EfFefe=y S0f, BVFER
Dﬂ%v\ AMmuJ_)P-)N\a_-J»—é(U{ m%MwA—M%
MJN B owch teod

G opleyze Y EeR
WPl o

) Comdadde oy . {E_;{; e ctlackion A nlB o0 B whichh ave
Mm\'\m@a A;%A.}-, E,’A%=¢g;@‘_ ¥ E= ;gﬁgem M
plEY = :‘:_'_F.(EL\.

Ruw - IRy prroble Kt FJEE® ot pE)=te

t

We will now study measures on rings. Recall X is a non empty set and you have R is a
collection of subsets which is closed. So, this ring which means E, F € R = E\F € R and

we also saw a sigma ring and such things.

So, let X is a set and R is a ring of subsets.

Definition: a measure p on a ring R is an extended real valued function defined on R such

that

(Hp=0,VE €R,
() we) =0,

(3) Countable additivity: Let {EL,}L_zlOo is a countable collection of sets in R which are

mutually disjoint, that means Ei N Ej = ¢ifi #j.IfE = nizlooEi € R, then

N
H(E) = 2 u(E).



So, before Lebesgue people did try to do things like this and they always stuck with finite
additivity that means, if you have a finite collection of disjoint sets, then the measure of the
union is the sum of the measures that is obvious because we have areas or lengths if you have
disjoint sets and you put the union then you can define the size or length or the area to be the

sum of the individual values.

But Lebesgue found that putting this condition of countable activity, which was not obvious
intuitively, helped to make a very rich theory of integration and measure and that is the

advantage of these things. So, we have as usual several remarks based on this definition.

Remark: (1) It is possible that there exists E € R such that p(E) = oo, because it is an

extended real valued function. So that can be sets whose measure is infinite.
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(2) If there exists any E in R, such that p(E) < oo, then, (ii) follows from (iii) because you

can write E = E U ¢ U ¢.. and therefore, if you now write the countable additivity you get

mu E equals mu phi plus mu phi plus mu phi plus mu phi etc.

This again I want to emphasize that when you should be able to cancel only when the
quantities are finite in an equation if you want to do it if something is infinite, then canceling

on both sides is absurd.

(3) pis finitely additive. So, if {E }l_: 1n mutually disjoint then you can write



E=E UE_U.UE U ¢ U..
1 2 n

and therefore, you get that.
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So, that will imply that u(E) = ), u(Ei).
i=1

So, now it is time to give some examples.

Example: (1) X any non empty set and R = P(X). So, you then define

WE) = 0, ifE = ¢,
= #of elements if E # ¢ and finite,
=+ oo otherwise.
So, if you have an infinite number of elements in E then you put mu E equals infinity. So, we

have to check. So, the first property is non negative and it is 0 for the empty set. So, we only

have to check countable additivity. So, {E i}i= 100 mutually disjoint of course, in this case we

[0e]

have the power sets so, E = U_, Ei.

First case E is finite. This implies Ei are empty for all but a finite number and those non

empty sets are also finite. In this case additivity is obvious because the empty sets will all



contribute 0 and you know the number of elements in the if you put the union of also a finite
number of finite sets, then the number of elements in the union is the sum of the number of
elements in the individual sets and that gives you precisely the additivity property.

Second case If E is infinite then you may either have there exists a E ; which is infinite or
there exists infinitely many non empty finite E ; in either case the if you take the sum on 1

side and the other both sides will be infinity and therefore, the countable additivity is

established
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So, secondly, second example. So, this is called the counting measure so, u is called the

counting measure, because it counts the number of elements in the sets.

(2) X is any non-empty set and you have R = P(X) and let x, € X. Then you have
WE) =1, if x € E,
= 0,ifx & E.

So, now again this non-negative pu of the empty set is obviously 0. So, we have checked

countable additivity.
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So,if (£} _,” is mutually disjointand E = U _ “E. So,ifx & E=x ¢E Vi

[ee]

So, we want to know if u(E) =), u(E l_). So, in both sides of the equation everything is 0 and
i=1

so, it is obviously true if x, € E, this implies there exists a single i naught such that x naught

belongs to Ei naught and x naught does not belong to Ei for all i naught equal to 1 naught

because the sets are mutually disjoint.
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The third example is something like the first example.



(3) X is again any non empty set and R = ring of finite sets and then f: X —» Rnon
negative function.
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Then you define u({xl,..., xn}) =) f(xi).
i=1

So, check p is a measure.
One remark I forgot to tell you in the countability additivity here. So, when we wrote the

countable additivity equation relationship here, the order in which we write the Ei is not



important because you have a series of positive terms and so, since all of this is now elements
are positive you can write them in any order the answer will always be the same So, that is

you do not have to worry about the convergence of the series
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So, we have this. So, the most important and interesting example is the Lebesgue measure,
which we will construct in detail a little later on. So, now, we will just prove some properties

of measures.
Proposition 1. So, X non empty, R ring on X, pu measure on R. Then
(1) pis monotone, i.e., E € F = u(E) < p(F).
(2) pis subadditivity, i.e., E € F, p(E) < oo, W(F\E) = w(F) — wu(E).
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So, the next proposition is called subadditivity.



Proposition 2: So, again X non empty set, R ring, p is measure and E € R, and you have

that so, {E i} is a finite or infinite sequence and E € R such that you have E C u_, E -

Then p(E) < ; u(Ei).
i=1

proof: so, you said Fl, =En El, and you define G1 = F1 , Gi = Fi\Uj: i_le . So, then you

1

have that Gi CFcE. So by monotonicity and countable additivity this implies that (Refer

Slide Time: 18:01)

N it = ) e =

P, EcF FBEB)UE W
’&— P = pRgyprey e addihn,

Py 2. L&xwu;w%\ %ag) T g omemn s Bje R -
R SURPVR - CEcue:
BT fine *’ithﬁ ema. E A
Tl pUY & Z plE)
= =
%: T=Bag. G=F Gis F;\LG\LF(,)
G Qilo Mo o= QRZE
P8 = Tple] 2 %H(Q) £ ped

——

A\
(Refer Slide Time: 18:45)

SET g o ,;,j,ﬁ;uaﬁ_ Bewoar. B COE:
T p@Y & I ple)

b
@ '-L'; Enc:. G,'-F G = ‘:‘,\ UE
'g = Lz ' %m U)

G, Fce, Q' Q“éf Y orm URLAE"
R = LZ.[.LCG\;\ = %P_(R;) 5?’4: ‘P‘L'ED'

S—
%_‘3‘ W) & Wy, porenn o B QED L flbe v e e
A o R m&»«&%;&&a& EeR -3 VB CE.
Thow 2 pE & yLED
Bs ¥ t.\; cE :%_Fca;\s.y(p.

bS]




W(E) = TH(G) < ZU(F) T u(E).

Proposition 3: So, X non empty, R ring, p measure on R, {E i} is a finite or infinite sequence

[00]

and E € R such that you have Uu_ EcE. Then ) u(El,) < u(E).
B i=1

n
proof: for every positive integer n, Ui—ln E = E. Therefore you have ). p(E i) < wE).
- i=1

Then from this you deduce the result immediately if n is finite and if the collection is infinite,

you let n — oo.
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So, now we have a very important proposition, a very important property of measures.

Proposition:(continuity from below) X non empty, R ring, @ measure. Now, {El,} is a

increasing sequence of sets in R and U_ 100 Ei = E € R. Then p(E) = lim u(En).

n— oo

proof: We said E 07 ¢, and then you can write



n(E) = u(Ui=1m E) = H(Ui=1m [ENE_,D = ;1 H(AENE, )

lim ¥ u(ENE,_) = lim u(u_" [ENE_])

n—ow =1 n—> o

= lim u(En).

n— o
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Proposition 5: (continuity from above) So, X non empty, R ring, p measure on R, and then

you have {E i} is a increasing sequence of sets in R and nizloo E = E e RIf u(En) < oo,for

some n, then p(E) = lim u(En).

n— oo
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proof: We have u(En) < oV n = m. So, you have {En\Em}n>m is an increasing family. So
now you write
WE) = 10" E) = wE) - u(n_ " E) = wENO_,"E)
= w(n_ “(E \E))

= lim w(E \E)

n—> o

= WE ) — lim p(E).

n—> oo

Since p(E m) is finite, I can cancel it on both sides and therefore I get the result which I need.

Example: Proposition 5 is not true if finiteness assumption is lost. So, for instance, you take

N and the counting measure and you take £ = {m: m = n}.
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So, then En are decreasing and u(En) = oo, Ynand you have ni:loo E = .

So, the measure of the intersection is 0, but the limit of this is still always infinity. So, the

equation is that that is why it is not true. And you have here.
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Now, we have one more definition again.

Definition: So, X non empty, R ring and p a measure, then we say that p is finite if

W(E) < oo, VE € R. We call p is sigma finite if E can be written as E = UizlooEl, and

u(Ei) < Vi

So, if you take Dirac measures I do not know if [ mentioned the name. This measure is called
the Dirac measure concentrated at x naught. This is called Dirac measure concentrated at x

naught, and that is of course a finite measure.

So, Dirac measure is a finite measure. Counting measure on N is sigma finite because if you
write a take any infinite collection of natural numbers you can write it as a disjoint union of
singleton. And each singleton has measure once so it is finite and therefore you can write it as
a union of a sum, union of sets of finite measure, countable union of sets of finite measure

and therefore this becomes a sigma finite measure.

So, now we conclude with a very, very useful result if we will use it later. It is a very pretty

results proposition. This is called the Borel-Cantelli Lemma, a very nice result.

Lemma: (Borel-Cantelli) So, X non empty, you have S sigma algebra, p measure, {E i}izloo

[0¢]

sequence of sets in S such that }; u(Ei) < oo. Then except for a set of measures 0 every
i=1

point x in X belongs to at most finitely many E -
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So, that means one what so you take E = {x € X}. So set x belongs to infinitely many {E l,}.

Then Lemma says that p(E) =
So, this is a very, very beautiful result and very useful in many situations.
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proof: So, let us see whatis E? x € E ifand only ifVn, 3i > ns.t. x EE and

E=n_"w_"E).

n=1 i=n i



[0e]

So, you have p(E) < u(Ui:noo Ei) <) u(Ei). Therefore, for every € > 0, that exists n

=n

such that ) u(Ei) < e =>wE) =0.

1=n
So, this is the Borel-Cantelli lemma.

So, our next objective is to give a measure on a ring we would like to see if we can extend it
to something. So, for instance, given a ring I can think of the smallest sigma ring containing
this ring we have already seen such things given any arbitrary collection of sets: what is the
smallest ring containing the collection or what is the smallest sigma ring containing a
collection. So, if I am given a measure on a ring, I would like to extend it to the smallest
sigma ring containing it and so on. So, such extensions we would like to study and we will do

it next time.



