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We will now study measures on rings. Recall X is a non empty set and you have R is a

collection of subsets which is closed. So, this ring which means and𝐸, 𝐹 ∈ 𝑅 ⇒ 𝐸\𝐹 ∈ 𝑅 

we also saw a sigma ring and such things.

So, let X is a set and R is a ring of subsets.

Definition: a measure on a ring R is an extended real valued function defined on R suchµ

that

(1) µ ≥ 0,  ∀ 𝐸 ∈ 𝑅,

(2) µ(ϕ) = 0,

(3) Countable additivity: Let is a countable collection of sets in R which are{𝐸
𝑖
}

𝑖=1
∞

mutually disjoint, that means If then𝐸
𝑖

∩ 𝐸
𝑗

= ϕ 𝑖𝑓 𝑖 ≠ 𝑗. 𝐸 = ∩
𝑖=1

∞𝐸
𝑖

∈ 𝑅,

µ(𝐸) =
𝑖=1

𝑁

∑ µ(𝐸
𝑖
).



So, before Lebesgue people did try to do things like this and they always stuck with finite

additivity that means, if you have a finite collection of disjoint sets, then the measure of the

union is the sum of the measures that is obvious because we have areas or lengths if you have

disjoint sets and you put the union then you can define the size or length or the area to be the

sum of the individual values.

But Lebesgue found that putting this condition of countable activity, which was not obvious

intuitively, helped to make a very rich theory of integration and measure and that is the

advantage of these things. So, we have as usual several remarks based on this definition.

Remark: (1) It is possible that there exists such that , because it is an𝐸 ∈ 𝑅 µ(𝐸) = ∞

extended real valued function. So that can be sets whose measure is infinite.
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(2) If there exists any E in R, such that , then, (ii) follows from (iii) because youµ(𝐸) < ∞

can write and therefore, if you now write the countable additivity you get𝐸 = 𝐸 ∪ ϕ ∪ ϕ..

mu E equals mu phi plus mu phi plus mu phi plus mu phi etc.

This again I want to emphasize that when you should be able to cancel only when the

quantities are finite in an equation if you want to do it if something is infinite, then canceling

on both sides is absurd.

(3) is finitely additive. So, if mutually disjoint then you can writeµ {𝐸}
𝑖=1

𝑛 



𝐸 = 𝐸
1

∪ 𝐸
2

∪.. ∪ 𝐸
𝑛

∪ ϕ ∪....

and therefore, you get that.
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So, that will imply that µ(𝐸) =
𝑖=1

𝑁

∑ µ(𝐸
𝑖
).

So, now it is time to give some examples.

Example: (1)  X any non empty set and . So, you then define𝑅 = 𝑃(𝑋)

µ(𝐸) =  0,  𝑖𝑓 𝐸 = ϕ,

=  # 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑓 𝐸 ≠ ϕ 𝑎𝑛𝑑 𝑓𝑖𝑛𝑖𝑡𝑒,

=+ ∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

So, if you have an infinite number of elements in E then you put mu E equals infinity. So, we

have to check. So, the first property is non negative and it is 0 for the empty set. So, we only

have to check countable additivity. So, mutually disjoint of course, in this case we{𝐸
𝑖
}

𝑖=1
∞ 

have the power sets so, .𝐸 = ∪
𝑖=1

∞𝐸
𝑖

First case E is finite. This implies are empty for all but a finite number and those non𝐸
𝑖

empty sets are also finite. In this case additivity is obvious because the empty sets will all



contribute 0 and you know the number of elements in the if you put the union of also a finite

number of finite sets, then the number of elements in the union is the sum of the number of

elements in the individual sets and that gives you precisely the additivity property.

Second case If E is infinite then you may either have there exists a which is infinite or𝐸
𝑖

there exists infinitely many non empty finite in either case the if you take the sum on 1𝐸
𝑖

side and the other both sides will be infinity and therefore, the countable additivity is

established
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So, secondly, second example. So, this is called the counting measure so, is called theµ

counting measure, because it counts the number of elements in the sets.

(2) X is any non-empty set and you have and let Then you have𝑅 = 𝑃(𝑋) 𝑥
0

∈ 𝑋.  

µ(𝐸) = 1,  𝑖𝑓 𝑥
0

∈ 𝐸,

=  0,  𝑖𝑓 𝑥
0

∉  𝐸.

So, now again this non-negative of the empty set is obviously 0. So, we have checkedµ

countable additivity.
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So, if is mutually disjoint and . So, if{𝐸
𝑖
}

𝑖=1
∞   𝐸 = ∪

𝑖=1
∞𝐸

𝑖
𝑥

0
∉  𝐸⇒ 𝑥

0
∉ 𝐸

𝑖
 ∀ 𝑖.

So, we want to know if = . So, in both sides of the equation everything is 0 andµ(𝐸)
𝑖=1

∞

∑ µ(𝐸
𝑖
)

so, it is obviously true if , this implies there exists a single i naught such that x naught𝑥
0

∈  𝐸

belongs to Ei naught and x naught does not belong to Ei for all i naught equal to i naught

because the sets are mutually disjoint.
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The third example is something like the first example.



(3) X is again any non empty set and and then non𝑅 = 𝑟𝑖𝑛𝑔 𝑜𝑓 𝑓𝑖𝑛𝑖𝑡𝑒 𝑠𝑒𝑡𝑠 𝑓:  𝑋 → ℝ 

negative function.
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Then you define µ({𝑥
1
,..., 𝑥

𝑛
}) =

𝑖=1

𝑛

∑ 𝑓(𝑥
𝑖
) .

So, check is a measure.µ

One remark I forgot to tell you in the countability additivity here. So, when we wrote the

countable additivity equation relationship here, the order in which we write the Ei is not



important because you have a series of positive terms and so, since all of this is now elements

are positive you can write them in any order the answer will always be the same So, that is

you do not have to worry about the convergence of the series
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So, we have this. So, the most important and interesting example is the Lebesgue measure,

which we will construct in detail a little later on. So, now, we will just prove some properties

of measures.

Proposition 1. So, X non empty, R ring on X, measure on R. Thenµ

(1) is monotone, i.e.,µ 𝐸 ⊂ 𝐹 ⇒ µ(𝐸) ≤ µ(𝐹).

(2) is subadditivity, i.e.,µ 𝐸 ⊂ 𝐹,  µ(𝐸) < ∞,  µ(𝐹\𝐸) = µ(𝐹) − µ(𝐸).
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So, the next proposition is called subadditivity.



Proposition 2: So, again X non empty set, R ring, is measure and and you haveµ 𝐸
𝑖

∈ 𝑅,  

that so, is a finite or infinite sequence and such that you have{𝐸
𝑖
} 𝐸 ∈ 𝑅 𝐸 ⊂ ∪

𝑖=1
𝐸

𝑖
 .

Then µ(𝐸) ≤
𝑖=1

∞

∑ µ(𝐸
𝑖
).

proof: so, you said and you define So, then you𝐹
𝑖

= 𝐸 ∩ 𝐸
𝑖

𝐺
1

= 𝐹
1
 ,   𝐺

𝑖
= 𝐹

𝑖
\∪

𝑗=1
𝑖−1𝐹

𝑗
 .

have that So by monotonicity and countable additivity this implies that (Refer𝐺
𝑖

⊂ 𝐹
𝑖

⊂ 𝐸
𝑖
 .
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µ(𝐸) =
𝑖

∑ µ(𝐺
𝑖
) ≤

𝑖
∑ µ(𝐹

𝑖
)

𝑖
∑ µ(𝐸

𝑖
).

Proposition 3: So, X non empty, R ring, measure on R, is a finite or infinite sequenceµ {𝐸
𝑖
}

and such that you have Then𝐸 ∈ 𝑅 ∪
𝑖=1

𝐸
𝑖

⊂ 𝐸 .
𝑖=1

∞

∑ µ(𝐸
𝑖
) ≤ µ(𝐸).

proof: for every positive integer n, Therefore you have∪
𝑖=1

𝑛 𝐸
𝑖

⊂ 𝐸.
𝑖=1

𝑛

∑ µ(𝐸
𝑖
) ≤ µ(𝐸).

Then from this you deduce the result immediately if n is finite and if the collection is infinite,

you let .𝑛 → ∞
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So, now we have a very important proposition, a very important property of measures.

Proposition:(continuity from below) X non empty, R ring, measure. Now, is aµ {𝐸
𝑖
}

increasing sequence of sets in R and Then∪
𝑖=1

∞ 𝐸
𝑖

= 𝐸 ∈ 𝑅. µ(𝐸) =
𝑛 ∞
lim
→

µ(𝐸
𝑛
).

proof: We said , and then you can write𝐸
0

≠ ϕ



µ(𝐸) = µ(∪
𝑖=1

∞ 𝐸
𝑖
) = µ(∪

𝑖=1
∞ [𝐸

𝑖
\𝐸

𝑖−1
]) =

𝑖=1

∞

∑ µ([𝐸
𝑖
\𝐸

𝑖−1
)

=
𝑛 ∞
lim
→ 𝑖=1

𝑛

∑ µ([𝐸
𝑖
\𝐸

𝑖−1
) =

𝑛 ∞
lim
→

µ(∪
𝑖=1

𝑛 [𝐸
𝑖
\𝐸

𝑖−1
])

=
𝑛 ∞
lim
→

µ(𝐸
𝑛
).
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Proposition 5: (continuity from above) So, X non empty, R ring, measure on R, and thenµ

you have is a increasing sequence of sets in R and If for{𝐸
𝑖
} ∩

𝑖=1
∞ 𝐸

𝑖
= 𝐸 ∈ 𝑅. µ(𝐸

𝑛
) < ∞,

some n, then µ(𝐸) =
𝑛 ∞
lim
→

µ(𝐸
𝑛
).
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proof: We have . So, you have is an increasing family. Soµ(𝐸
𝑛
) < ∞ ∀ 𝑛 ≥ 𝑚 {𝐸

𝑛
\𝐸

𝑚
}

𝑛≥𝑚
 

now you write

µ(𝐸
𝑚

) − µ(∩
𝑖=1

∞ 𝐸
𝑖
) = µ(𝐸

𝑚
) − µ(∩

𝑖=𝑚
∞ 𝐸

𝑖
) = µ(𝐸

𝑚
\(∩

𝑖=𝑚
∞𝐸

𝑖
))

= µ(∩
𝑖=𝑚

∞(𝐸
𝑚

\𝐸
𝑖
))

=
𝑛 ∞
lim
→

µ(𝐸
𝑚

\𝐸
𝑛
)

= µ(𝐸
𝑚

) −
𝑛 ∞
lim
→

µ(𝐸
𝑛
).

Since is finite, I can cancel it on both sides and therefore I get the result which I need.µ(𝐸
𝑚

) 

Example: Proposition 5 is not true if finiteness assumption is lost. So, for instance, you take

and the counting measure and you take .ℕ 𝐸
𝑛

= {𝑚:  𝑚 ≥ 𝑛}
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So, then are decreasing and and  you have𝐸
𝑛

µ(𝐸
𝑛
) = ∞,  ∀ 𝑛 ∩

𝑖=1
∞ 𝐸

𝑖
= ϕ.

So, the measure of the intersection is 0, but the limit of this is still always infinity. So, the

equation is that that is why it is not true. And you have here.
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Now, we have one more definition again.

Definition: So, X non empty,  R ring and a measure, then we say that is finite ifµ µ

We call is sigma finite if E can be written as andµ(𝐸) < ∞,  ∀𝐸 ∈ 𝑅. µ  𝐸 = ∪
𝑖=1

∞𝐸
𝑖

µ(𝐸
𝑖
) < ∞ ∀ 𝑖.

So, if you take Dirac measures I do not know if I mentioned the name. This measure is called

the Dirac measure concentrated at x naught. This is called Dirac measure concentrated at x

naught, and that is of course a finite measure.

So, Dirac measure is a finite measure. Counting measure on N is sigma finite because if you

write a take any infinite collection of natural numbers you can write it as a disjoint union of

singleton. And each singleton has measure once so it is finite and therefore you can write it as

a union of a sum, union of sets of finite measure, countable union of sets of finite measure

and therefore this becomes a sigma finite measure.

So, now we conclude with a very, very useful result if we will use it later. It is a very pretty

results proposition. This is called the Borel-Cantelli Lemma, a very nice result.

Lemma: (Borel-Cantelli) So, X non empty, you have S sigma algebra, measure,µ {𝐸
𝑖
}

𝑖=1
∞

sequence of sets in S such that Then except for a set of measures 0 every
𝑖=1

∞

∑ µ(𝐸
𝑖
) < ∞.

point x in X belongs to at most finitely many .𝐸
𝑖
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So, that means one what so you take . So set x belongs to infinitely many .𝐸 = {𝑥 ∈ 𝑋} {𝐸
𝑖
}

Then Lemma says that µ(𝐸) = 0.  

So, this is a very, very beautiful result and very useful in many situations.
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proof: So, let us see what is E? if and only if and𝑥 ∈ 𝐸 ∀ 𝑛,  ∃ 𝑖 ≥ 𝑛 𝑠. 𝑡.  𝑥 ∈ 𝐸
𝑖

𝐸 = ∩
𝑛=1

∞(∪
𝑖=𝑛

∞ 𝐸
𝑖
).



So, you have Therefore, for every that exists nµ(𝐸) ≤ µ(∪
𝑖=𝑛

∞ 𝐸
𝑖
) ≤

𝑖=𝑛

∞

∑ µ(𝐸
𝑖
). ϵ > 0,  

such that
𝑖=𝑛

∞

∑ µ(𝐸
𝑖
) < ϵ ⇒ µ(𝐸) = 0.

So, this is the Borel-Cantelli lemma.

So, our next objective is to give a measure on a ring we would like to see if we can extend it

to something. So, for instance, given a ring I can think of the smallest sigma ring containing

this ring we have already seen such things given any arbitrary collection of sets: what is the

smallest ring containing the collection or what is the smallest sigma ring containing a

collection. So, if I am given a measure on a ring, I would like to extend it to the smallest

sigma ring containing it and so on. So, such extensions we would like to study and we will do

it next time.


