Measure and Integration
Professor S. Kesavan
Department of Mathematics
Institute of Mathematical Sciences
Lecture 29
Non-negative Functions

(Refer Slide Time: 00:07)

(Xos,r) e «® %o ak-r‘(a_ %ﬂ
A A
S Doy Jeds Zoupmd

E ox qu.n,..; J 2% e

[—,

)

So, we are in the process of defining the Lebesgue integral. So, when we had ¢, so (X, S, 1) isa

n n
measure space; and ¢ = 0 simple function. So, @ = )’ X, [odn=7Y (xiu(Ai)
i=1 S ¢ i=1

EcX [edu=][qexdu
E X

So, we now continue with this; so, now we are going to do non-negative functions.



(Refer Slide Time: 01:06)

g : %, ol
s — L 2

Noa -Euﬁuﬂ_ '?‘-"“ Hown-

o) wamn op. § o nenore, RenRd rdeval  plfa e

T Qo) sdemal o § oo X, vk o Lfudd oy
S20s —_—0‘(::; éc?&#
2 a;nm‘l.
Eer o, Sprn {4
[ba 2audin ety an J-&u, C\am Wi M o aasde

Codav (foi Oinda for

Non negative functions:

So, (X, S, u) measure space; f non-negative, extended real valued function measurable function

on X. Then, the Lebesgue integral of f over X with respect to the measure p is defined by

{fdu - Sup{OS(pSf: @ simple } £ pdy.

Andif E € X measurable [ fdp = ffXEdu..
E X

So, recall that given we we proved a very important theorem earlier. If f is a non-negative
measurable function, then it is the increasing limit of simple non-negative functions; and
therefore, this definition makes sense. Now, by the remarks which you made at the end of the last
session, we it is clear that since if you have two measurable simple functions, one less than the

other than the integrals have the same inequality between them.

And therefore, by earlier remarks these definitions agree with the ones, one made earlier, ones
made earlier for simple functions. So, if f is a simple function, then this definition is not agrees
with the previous definition. So, that is the, that is obvious from the two remarks which I made at

the end of the previous video; so you please go and check that those two.
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Remark. | fdu can be infinite. So, next proposition, very trivial one and immediate from
X

the definitions.

Proposition: (X, S, ) is a measure space and f non-negative extended real valued

measurable function defined on X.



(a): If g is a non-negative measurable function such that 0 < g < f; and E c X

measurable, then [ gdp < [ fdu.
E E

(b) If E and F measurable subsets of X, and E c F; [ fdp < [ fdu
E F

(c): If C > 0 is areal constant number, E € X measurable; then
JCfdu = C[ fdu
E E
(d),IfEcX measurable,flE = 0;then | fdu = 0; and
E

(e). If E © X measurable and u(E) = 0; then [ fdu = 0. All these have immediate one
E

line deductions from the definitions.
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So proof, exercise. Next proposition:



Proposition: (X, S, ) measurable measure space f:X — R non-negative. So, now
non-negative measurable function and integral over X, [ fdu = 0;then f = 0 a.e.
E
Proof: So, if you have a no-negative function whose integral is 0, then the function has to
be essentially 0. So, let

Fnz{x €EX: f(x) = 1/n}

I do not know how to put a modulus, because we are dealing with non-negative functions. And

this is true for alln € N.

(e¢]

Then, {x € X: f(x) # 1}= U F . Now, if you have if you take [ fdp = 0. But, that is
n=1 E

H(F) < [ fdu < [ fdu=0=pF) =0, vn.
F X

And therefore, since it is the union of sets of measure 0, so this implies f = 0 a.e.
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Proposition: (X, S, ) measurable measure space @: X — R non-negative simple functions.

i

Let E € S, define V(E) = [ qdy; then, |t is a measure on S. So, the indefinite integral gives you
X

a measure, so

Proof. Indefinite integral, because I am saying the integral taken on over arbitrary sets of the

sigma algebra.



So, v(E) = 0 and v of the empty set is obviously 0; so, sufficient to check countable additivity.

) k
So,let E = U El_, Ei € S all mutually disjoint. So, Let @ = ). ax,-
n=1 j=1 J
So, what is v(E)?
k k ) o k
VE) =[edu=Y ap(ANE)=Y a YA NE)=3 3 ap(d nNE).
E =17 =1 Ji=1/ i=1j=1 7/

= % [ odu = ¥ v(E)
i=1Ei i=1

So, that completes the proof.
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So, now we are going to prove in first step of an important property. When you know, you have
integration that is a linear operation. If you take sum of functions and integrate, it is the sum of
the integrals and so on. But, these things have to be proved now with the definition which we

have given. And therefore as a first step towards this, we have the following result.

Proposition: (X, S, 1) measurable measure space ¢, Jy non-negative simple functions; then,

J(@ + Wdu = [ @dp + [ Ydu
X X X
Proof: Take

"are disjoint and {Bi} " are disjoint
i=1 j=1

cp—Zax, v = ZBXB, {a}

j=1 7
You can write in many forms as I said, and you can always write it in terms of disjoint sets.
So, now, you set

E. . =A NB, E  aredisjoint
Lj i j Lj

n-m

outside U U E ;@ pare both 0; so, now,
i=1j=1 i



(@ + Wdu = (0, +BIuE, ) = | @du + [ b
E " E E

ij ij ij

So, @ + Y, so now you have again a disjoint thing here; and therefore,

So, now over union of E r E l,j’s are disjoint; each of these is a measure. This is a measure, this is

a measure, this is a measure; and therefore, you know by countable additivity, you can write over

the union. So, result follows from previous proposition, since
(o + Wdu, [ @dp, [Wdp define measures; and E j are all disjoint.
E E E :

So, therefore by countable additivity, the result will (follow). So, now, we will of course, expand
this result to a much better result later on; next time, we will there now look at limits. So, one of
the drawbacks we saw in the Riemann integral was the limit of integrable function is not
integrable; so, those are the things. So, we will now try to study something about limits of
sequence integrals of sequences of functions. And, of course, we are still restricted to the case of

non-negative functions. And we will do that next time.



