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So, we are in the process of defining the Lebesgue integral. So, when we had , so is aφ (𝑋, 𝑆, µ)

measure space; and simple function. So,φ ≥ 0 φ =
𝑖=1

𝑛

∑ α
𝑖
χ

𝐴
𝑖

,     
𝑋
∫ φ 𝑑µ =

𝑖=1

𝑛

∑ α
𝑖
µ(𝐴

𝑖
)

𝐸 ⊂ 𝑋,    
𝐸
∫ φ 𝑑µ =

𝑋
∫ φχ

𝐸
𝑑µ.

So, we now continue with this; so, now we are going to do non-negative functions.
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Non negative functions:

So, measure space; non-negative, extended real valued function measurable function(𝑋, 𝑆, µ) 𝑓

on . Then, the Lebesgue integral of over with respect to the measure is defined by𝑋 𝑓 𝑋 µ

.
𝑋
∫ 𝑓𝑑µ = 𝑠𝑢𝑝

{0≤φ≤𝑓 :  φ 𝑠𝑖𝑚𝑝𝑙𝑒 }
𝑋
∫ φ𝑑µ

And if measurable .𝐸 ⊂ 𝑋 
𝐸
∫ 𝑓𝑑µ =

𝑋
∫ 𝑓χ

𝐸
𝑑µ.

So, recall that given we we proved a very important theorem earlier. If is a non-negative𝑓

measurable function, then it is the increasing limit of simple non-negative functions; and

therefore, this definition makes sense. Now, by the remarks which you made at the end of the last

session, we it is clear that since if you have two measurable simple functions, one less than the

other than the integrals have the same inequality between them.

And therefore, by earlier remarks these definitions agree with the ones, one made earlier, ones

made earlier for simple functions. So, if is a simple function, then this definition is not agrees𝑓

with the previous definition. So, that is the, that is obvious from the two remarks which I made at

the end of the previous video; so you please go and check that those two.
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Remark. can be infinite. So, next proposition, very trivial one and immediate from
𝑋
∫ 𝑓𝑑µ

the definitions.

Proposition: is a measure space and non-negative extended real valued(𝑋, 𝑆, µ) 𝑓

measurable function defined on .𝑋



(a): If is a non-negative measurable function such that ; and𝑔 0 ≤ 𝑔 ≤ 𝑓 𝐸 ⊂ 𝑋

measurable, then .
𝐸
∫ 𝑔𝑑µ ≤

𝐸
∫ 𝑓𝑑µ

(b) If E and F measurable subsets of X, and ;𝐸 ⊂ 𝐹
𝐸
∫ 𝑓𝑑µ ≤

𝐹
∫ 𝑓𝑑µ

(c): If is a real constant number, measurable; then𝐶 > 0 𝐸 ⊂ 𝑋 

𝐸
∫ 𝐶𝑓𝑑µ = 𝐶

𝐸
∫ 𝑓𝑑µ

(d), If measurable, ; then ; and𝐸 ⊂ 𝑋 𝑓|
𝐸

= 0
𝐸
∫ 𝑓𝑑µ = 0 

(e). If measurable and ; then . All these have immediate one𝐸 ⊂ 𝑋 µ(𝐸) = 0
𝐸
∫ 𝑓𝑑µ = 0

line deductions from the definitions.
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So proof, exercise. Next proposition:



Proposition: measurable measure space non-negative. So, now(𝑋, 𝑆, µ) 𝑓: 𝑋 → ℝ

non-negative measurable function and integral over , ; then .𝑋
𝐸
∫ 𝑓𝑑µ = 0 𝑓 = 0    𝑎. 𝑒

Proof: So, if you have a no-negative function whose integral is 0, then the function has to

be essentially 0. So, let

𝐹
𝑛

= 𝑥 ∈ 𝑋 :  𝑓(𝑥) ≥ 1/𝑛{ }

I do not know how to put a modulus, because we are dealing with non-negative functions. And

this is true for all .𝑛 ∈ ℕ

Then, . Now, if you have if you take . But, that is𝑥 ∈ 𝑋 :  𝑓(𝑥) ≠ 1{ } =
𝑛=1

∞

⋃ 𝐹
𝑛

𝐸
∫ 𝑓𝑑µ = 0

.1
𝑛 µ(𝐹

𝑛
) ≤

𝐹
𝑛

∫ 𝑓𝑑µ ≤
𝑋
∫ 𝑓𝑑µ = 0 ⇒ µ(𝐹

𝑛
) = 0,   ∀𝑛

And therefore, since it is the union of sets of measure 0, so this implies .𝑓 = 0   𝑎. 𝑒
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Proposition: measurable measure space non-negative simple functions.(𝑋, 𝑆, µ) φ: 𝑋 → ℝ

Let , define ; then, is a measure on . So, the indefinite integral gives you𝐸 ∈ 𝑆 ν(𝐸) =
𝑋
∫ φ𝑑µ µ 𝑆

a measure, so

Proof. Indefinite integral, because I am saying the integral taken on over arbitrary sets of the

sigma algebra.



So, and of the empty set is obviously 0; so, sufficient to check countable additivity.ν(𝐸) ≥ 0 ν

So, let , all mutually disjoint. So, Let . 𝐸 =
𝑛=1

∞

⋃ 𝐸
𝑖

𝐸
𝑖

∈ 𝑆 φ =
𝑗=1

𝑘

∑ α
𝑖
χ

𝐴
𝑗

So, what is ?ν(𝐸)

ν(𝐸) =
𝐸
∫ φ𝑑µ =

𝑗=1

𝑘

∑ α
𝑗
µ(𝐴

𝑗
∩ 𝐸) =

𝑗=1

𝑘

∑ α
𝑗

𝑖=1

∞

∑ µ(𝐴
𝑗

∩ 𝐸
𝑖
) =

𝑖=1

∞

∑
𝑗=1

𝑘

∑ α
𝑗
µ(𝐴

𝑗
∩ 𝐸

𝑖
).

=
𝑖=1

∞

∑
𝐸

𝑖

∫ φ𝑑µ =
𝑖=1

∞

∑ ν(𝐸
𝑖
)

So, that completes the proof.
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So, now we are going to prove in first step of an important property. When you know, you have

integration that is a linear operation. If you take sum of functions and integrate, it is the sum of

the integrals and so on. But, these things have to be proved now with the definition which we

have given. And therefore as a first step towards this, we have the following result.

Proposition: measurable measure space non-negative simple functions; then,(𝑋, 𝑆, µ) φ, ψ

𝑋
∫(φ + ψ)𝑑µ =

𝑋
∫ φ𝑑µ +

𝑋
∫ ψ𝑑µ

Proof: Take

, ,φ =
𝑖=1

𝑛

∑ α
𝑖
χ

𝐴
𝑖

ψ =
𝑗=1

𝑚

∑ β
𝑗
χ

𝐵
𝑗

𝐴
𝑖{ }

𝑖=1

𝑛 𝑎𝑟𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 𝑎𝑛𝑑 𝐵
𝑖{ }

𝑗=1

𝑚 𝑎𝑟𝑒 𝑑𝑖𝑠𝑗𝑜𝑖𝑛𝑡 

You can write in many forms as I said, and you can always write it in terms of disjoint sets.

So, now, you set

are disjoint𝐸
𝑖,𝑗

= 𝐴
𝑖

∩ 𝐵
𝑗
,    𝐸

𝑖,𝑗
  

outside ; are both 0; so, now,
𝑖=1

𝑛

⋃
𝑗=1

𝑚

⋃ 𝐸
𝑖,𝑗

φ, ψ



𝐸
𝑖,𝑗

∫ (φ + ψ)𝑑µ = (α
𝑖

+ β
𝑗
)µ(𝐸

𝑖,𝑗
) =

𝐸
𝑖,𝑗

∫ φ𝑑µ +
𝐸

𝑖,𝑗

∫ ψ𝑑µ

So, , so now you have again a disjoint thing here; and therefore,φ + ψ

So, now over union of , ’s are disjoint; each of these is a measure. This is a measure, this is𝐸
𝑖,𝑗

𝐸
𝑖,𝑗

a measure, this is a measure; and therefore, you know by countable additivity, you can write over

the union. So, result follows from previous proposition, since

, , define measures; and are all disjoint.
𝐸
∫(φ + ψ)𝑑µ

𝐸
∫ φ𝑑µ

𝐸
∫ ψ𝑑µ 𝐸

𝑖,𝑗

So, therefore by countable additivity, the result will (follow). So, now, we will of course, expand

this result to a much better result later on; next time, we will there now look at limits. So, one of

the drawbacks we saw in the Riemann integral was the limit of integrable function is not

integrable; so, those are the things. So, we will now try to study something about limits of

sequence integrals of sequences of functions. And, of course, we are still restricted to the case of

non-negative functions. And we will do that next time.


