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Lecture 26
Convergence in measure

So, we will continue with our study of properties of convergence in measures. So, now we look

at some algebraic operations and the usual properties.
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Proposition: , be a measure space real valued measurable functions,(𝑋, 𝑆, µ) {𝑓
𝑛
} ,  {𝑔

𝑛
}

in , real valued measurable. Let then𝑓
𝑛

→ 𝑓,   𝑔
𝑛

→ 𝑔 µ 𝑓, 𝑔 α, β ∈  ℝ,  

in measure and in measure. So, these are the usualα𝑓
𝑛

+ β𝑔
𝑛

→ α𝑓 + β𝑔 |𝑓
𝑛
| → |𝑓|

properties we expect from any reasonable notion of convergence.

Proof: so let so thenε >

𝑥 ∈ 𝑋 :  |(α𝑓
𝑛

− β𝑔
𝑛
) − (α𝑓 − β𝑔)| ≥ ε{ } ⊂ 𝑥 ∈ 𝑋 :  |𝑓

𝑛
(𝑥) − 𝑓(𝑥)| ≥ ε/(2|α|){ }

∪ 𝑥 ∈ 𝑋 :  |𝑔
𝑛
(𝑥) − 𝑔(𝑥)| ≥ ε/(2|β|){ }



So, we can take of course alpha beta not equal to 0, otherwise there is nothing to prove. So, then

the right hand side for n sufficiently large go the measure can be made as small as you like and

therefore this measure also goes to 0. Similarly, you have

𝑥 ∈ 𝑋 :  | |𝑓
𝑛
(𝑥)| − |𝑓(𝑥)| | ≥ ε{ } ⊂ 𝑥 ∈ 𝑋 :  |𝑓

𝑛
(𝑥) − 𝑓(𝑥)| ≥ ε{ }

This is again by the triangle inequality mod of mod a minus mod b is equal to less than or equal

to mod of a minus b. So, if this is greater equal to epsilon this will also be greater equal to

epsilon. So, from these two the result follows immediately.
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So now next proposition about products.

Proposition: , be a measure space real value measurable functions,(𝑋, 𝑆, µ) {𝑓
𝑛
} ,  {𝑔

𝑛
}

in , real valued measurable. Then if So, now we are having𝑓
𝑛

→ 𝑓,   𝑔
𝑛

→ 𝑔 µ 𝑓, 𝑔 µ(𝑋) < ∞.

condition here in measure, so there is some extra restriction in this.𝑓
𝑛
𝑔

𝑛
→ 𝑓𝑔

Proof, so we know that

𝑓𝑔 = 1
4 (𝑓 + 𝑔)2 − (𝑓 − 𝑔)2{ }



So, if goes to and in measure then will go to in measure then𝑓
𝑛
 ,  𝑔

𝑛
𝑓 𝑔 𝑓

𝑛
+ 𝑔

𝑛
𝑓 + 𝑔 

will go to in measure, so sufficient to show that converges to in measure𝑓
𝑛

− 𝑔
𝑛

𝑓 − 𝑔 𝑓
𝑛

𝑓

implies square converges to square in measure.𝑓
𝑛

𝑓

So, then this will go in measure will go to in measure,(𝑓
𝑛

+ 𝑔
𝑛
) (𝑓 + 𝑔)2

in measure and then by multiplication by 1 by 4 you can easily check is(𝑓
𝑛

− 𝑔
𝑛
)2 → (𝑓 − 𝑔)2

also no problem and therefore we will have completed the proof of this theorem.
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So, now this is done in a few steps. So, first step

Step 1: Assume in measure, so𝑓
𝑛

→ 0

𝑥 ∈ 𝑋 :  |𝑓
𝑛
(𝑥)|2 ≥ ε{ } = 𝑥 ∈ 𝑋 :  |𝑓

𝑛
(𝑥)| ≥ ε{ }

so it is the same thing. So and therefore this implies in measure.ε > 0 𝑓
𝑛

2 → 0

Step 2 so, in measure. Now, you let𝑓
𝑛

→ 𝑓 ⇒ 𝑓
𝑛

− 𝑓 → 0

𝐸
𝑛

= 𝑥 ∈ 𝑋 :  |𝑓(𝑥)| > 𝑛{ }

Then decreases because as n becomes larger the set becomes smaller and since is real𝐸
𝑛

𝑓

valued it decreases to so is real value this decreases to the empty set. So, now you use the fact𝑓

that and this implies that .µ(𝑋) < ∞ µ(𝐸
𝑛
) → 0

This is the continuity from above which we have proved, if you have the finite measure space

then you have the intersection if decreases to empty set then . So, then choose so𝐸
𝑛

µ(𝐸
𝑛
) → 0

given choose such that .δ > 0 𝑚 µ(𝐸
𝑚

) < δ
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Now

𝑥 ∈ 𝑋 :  |𝑓
𝑛
𝑓(𝑥) − 𝑓2(𝑥)| ≥ ε{ } = 𝑥 ∈ 𝑋 :  |𝑓

𝑛
𝑓(𝑥) − 𝑓2(𝑥)| ≥ ε{ } ∩ 𝐸

𝑚

∪ 𝑥 ∈ 𝑋 :  |𝑓
𝑛
𝑓(𝑥) − 𝑓2(𝑥)| ≥ ε{ } ∩ 𝐸

𝑚
𝑐

so it is, that is straight forward thing, so now.

So if this set, so

µ 𝑥 ∈ 𝑋 :  |𝑓
𝑛
𝑓(𝑥) − 𝑓2(𝑥)| ≥ ε{ } ∩ 𝐸

𝑚( ) < δ

the measure of the set is obviously less than the measure of E m and therefore that is less than

delta. Now, on 𝐸
𝑚

𝑐,     |𝑓(𝑥)| ≤ 𝑚

therefore you have ε ≤ |𝑓
𝑛
𝑓(𝑥) − 𝑓 (𝑥)| ≤ 𝑚|𝑓

𝑛
(𝑥) − 𝑓(𝑥)|

Therefore, 𝑥 ∈ 𝑋 :  |𝑓
𝑛
𝑓(𝑥) − 𝑓2(𝑥)| ≥ ε{ } ∩ 𝐸

𝑚
𝑐 ⊂ 𝑥 ∈ 𝑋 :  |𝑓

𝑛
(𝑥) − 𝑓 (𝑥)| ≥ ε/𝑚{ }

And this, measure of this set goes to 0 because converges to in measure, so converges to𝑓
𝑛

𝑓 𝑓
𝑛

in measure implies there exists a capital such that for all you have the measure𝑓 𝑁 ∈ ℕ 𝑛 ≥ 𝑁



.µ 𝑥 ∈ 𝑋 :  |𝑓
𝑛
𝑓(𝑥) − 𝑓2(𝑥)| ≥ ε{ } ∩ 𝐸

𝑛
𝑐( ) ≤ δ

So, consequently for all you have𝑛 ≥ 𝑁

µ 𝑥 ∈ 𝑋 :  |𝑓
𝑛
𝑓(𝑥) − 𝑓2(𝑥)| ≥ ε{ }( ) ≤ 2δ

and so that implies that in measure.𝑓
𝑛
𝑓 → 𝑓2
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Step 3, you have

𝑓
𝑛

2 − 𝑓2 = (𝑓
𝑛

− 𝑓)2 + 2(𝑓
𝑛
𝑓 − 𝑓2)

Now, this goes to 0 in measure because goes to in measure the square when it goes to𝑓
𝑛

𝑓

goes to 0 in measure so the square goes to 0 in measure and just now we saw that this𝑓
𝑛

− 𝑓

goes to 0 in measure and therefore you have in measure. So, this completes the proof of𝑓
𝑛

→ 𝑓2

this proposition.

So, example

Example: Not true if ,µ(𝑋) = ∞



so again you take the standard set , and equals counting measure. Now, you𝑋 = 𝑁 𝑆 = 𝑃(𝑁) µ

define

𝑓
𝑛
(𝑘) = 1

𝑛      𝑖𝑓   1 ≤ 𝑘 ≤ 𝑛

 = 0    𝑖𝑓    𝑛 > 𝑘.

Then this implies that uniformly implies in measure, we have seen that. Now,𝑓
𝑛

→ 0 𝑓
𝑛

→ 0

you take

𝑔 (𝑛) = 𝑛    ∀ 𝑛.

you have a fixed sequence you do not even have to need the sequence.𝑓
𝑛
𝑔 (𝑛) = 1
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So, this will mean that does not go to 0 uniformly, so does not converge{𝑓
𝑛
𝑔} {𝑓

𝑛
𝑔}

uniformly to 0. Hence, does not converge to 0 in measure. So, this is not true for infinite{𝑓
𝑛
𝑔}

measure spaces. So, we will conclude our study of convergence issues with this and before

proceeding further we will do some exercises.


