Measure and Integration
Professor S. Kesavan
Department of Mathematics
Institute of Mathematical Sciences
Lecture 25
4.6 — Convergence in measure

So, we will continue with the study of Convergence in Measure. So, the previous session
what we did was we define what is convergence and measure what is Cauchy in measure and
then we studied its relationship with the point where is convergence. So, if it is convergence
in measure, then you have a sub sequence which converges point wise and if it is finite
measure space and point wise convergence always implies convergence in measure then not

true for the infinite measure spaces.

Then we also saw that the limit was unique in the sense that if you have two functions to
reach a certain sequence converges in measure then the two have to be equal almost
everywhere and that is as good as uniqueness to this as far as you can go because of the very
definition of convergence in measure. Today, we will look at the connection with almost
uniform convergence and also what is Cauchy in measure, that convergence and measure that

they imply each other. So, these are the things which we want to do today.
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So, we will start with the following proposition So,



Proposition: (X, S, ) measure space { fn} sequence of real-valued measurable functions if

I do not say this please assume it always when we talk of real-valued measurable functions.
Then, if fn converges in measure, then it is Cauchy in measure. So, this is always the easy

part.

Proof: Let us take fn — f in pn and then if you if you take So, let us take € > 0 then
{x €X:|f () —f (0] = s}c {x €X: |f (0) - f()]| = s/z}

U {x €X:If () — f()] 2 s/z}

this is a usual argument we gave because this set is contained in because the triangle

inequality fn — fm is this an fn — f plus f minus fm and then each of these is less than

epsilon by 2. So, obviously, this will be less than epsilon.

So, if this has to be greater than equal to € then it has to belong to one of these two sets. So,

given 8 > 0 So, find N such that u({x €X: |f () — f(O)| = e/z}) < 8/2

u({x €X:|f (0 - f@)] 2 e/2})< §/2

for all mmn = N. So, this will imply then
n({x € x: If ® - f, (0| = €})< 8, forallnm = N

and that proves that { fn} is a Cauchy sequence in measure.
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So, now we have to do the converse that takes some work and it also gets mixed up with the
question about almost uniform convergence. So, we will say proposition we will do it in

several stages.

Proposition: (X, S, 1) measure space { fn} sequence of real-valued functions Cauchy in

measure so, the ultimate aim is to show that this converges in measure.

So, if there exists a subsequence { fn } which converges in measure to real-valued measurable
k

for function f then fn — fin . So, this is just like in real sequences you have a Cauchy

sequence and if you have a convergent subsequence then the original sequence is also

convergent and it has the same limit.
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Proof: Let € > 0, then

{x €EX:|f () —f @2 s}c {x € X: |f (1) — fnk(x)l > s/Z}

U {x eEX:|f () - f¥)] = 8/2}.

let 5§ > 0 So, there exists a capital N such that for all n, n =N

u({x €EXIf,(0) —f (= s/z}) < §/2

u({x € X: |fn x) = f)| = e/2})< 5/2.
So, this will imply then p({x € X: |f (x) = f (x)| = €})< 8, foralln = N.

that is a fn—>“f in u by the definition of convergence in measure.

Proposition so, our aim will be if you have a Cauchy in measure we will try to construct a sub
sequence which is convergent in measure and then those original sequence will also

converge. So,



Proposition: (X, S, 1) measure space { fn} sequence of real-valued measurable functions

converging almost uniformly to f measurable real value then fn - finp

So, if you have almost uniform convergence, then you have convergence in measure so,

proof. So,

Proof: let € > 0 then you and let § > 0. So, choose F € S, u(F) < 6 and on

F* f - funiformly. What does it imply there exists

= 3n suchthatvn 2n Vx € F, |f (x) — f(¥)| < e
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So, for all n > n, you will have, so, this depends on epsilon and really on delta also because

you are using the 6 comes because the choice of the set f and then therefore, F ‘ epsilon is

because of the uniform convergence on f complement. So, we have this that

w(fx e X 1f,00 - f@I = )< @) <
and therefore, this proves that fn—>“f .

Next proposition

Proposition: (X, S, 1) measure space {fn} real valued measurable functions Cauchy in

measure then there exists a sub sequence which is almost uniformly Cauchy. So, you now see
how we are going so, we have a sequence which is Cauchy in measure so, you have a sub

sequence which is almost uniformly Cauchy.

Now, almost uniformly Cauchy means almost uniformly convergent, we have already seen
that and almost uniformly convergent in place convergence in measures, so, what we have
done this we have seen that there exists a subsequence of a Cauchy in measure which is
almost uniformly Cauchy therefore, almost uniformly convergent therefore, convergent in
measure and then by the previous proposition which we prove you have a subsequence which
converges in measure and its Cauchy in measure means it converges in measure to that same

function.



So, that is how we are going to prove and in that process we are proving also results

connecting convergence in measure and almost uniform convergence. So,

Proof: so, let k € N then there exists n(k) € N such that for all Vv n,m = n(k) you have

the u({x €EX:If () —f (0= ZL]) < ZL

Now, you choose
n = n(l) + 1, n,= max{n(Z), n, + 2}, n,= max{n(S), n,+ 3}, ...... so on. So,
+ k}.

n = max{n(k), n_,

So, n = n(k), n > k, also. So, therefore, we have n, is a proper subsequence {fn} is
k

thus sub sequence.
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So, now, we will define E. = 1x € X|f. (¥) = f. )| =<1 = wE) <=
k n, L 2 k 2
We connect with these conditions this condition so, that gives you this.
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So, let § > 0. Choose k such that % < 6. and you said. You know what is



[0e]

So, what about p(F) = U p(E) < 2,+ < 8.
i=k

And so that is a geometric sequence and therefore, you have that this is less than 21 — using

the fact of this and that, of course, is less than 8 by choice.

No also you chose epsilon. So, givene > 0, choose N > k ——~ 2N — < &. So, now you take

x€F, m=12=N, Ifnl(x)—fn(x)l glf —f (x)l

1 1
< Z 2’ S St E
j=l
(Refer Slide Time: 19:26)
(Fys <& uE)) < < 5. kal
& '"”'P ) 2.‘w< L
G £55 e 24 1 <kl 73
Thi -
>r.(—;Fr"i walzd o TEL
= = <l <&

R e N R
5&}1 o waf C-..aa P AN (A PANS

(B & ok wif Guuo
fﬁ (RS0 camo qy ) vl w8 fn ca_eﬁg,.w
SN TP W P YT N PSR AN
O I3 et wuf Camdly =33 § £ oo auf
= £ o )5 o‘

N
(4

L

And therefore, this is true for all this and therefore, you have { fn } is uniformly Cauchy in

k

F%, and W(F) < 6. So, this proves that you have subsequence which is unique almost. So,

{ fn } is almost uniformly Cauchy. Now, we have almost home. So, proposition
k

Proposition: (X, S, 1) measure space { fn} real valued measurable functions Cauchy in

measure this implies 3 a real valued measurable function f such that f n—>uf .



Proof: So, {fn} is Cauchy in measure so, { fn } almost uniformly Cauchy implies there

k

exists an f.

So, say {fn} almost uniformly and that implies that fn —>“f in measure because we have
k k

proved that and because you have some sequence which converges this measure no general is

in Cauchy So, this in place fn —>“f .
k
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So, now we have proved a lot of things, so, it is better to have an idea what we have proved.
So, we have convergence almost everywhere then you have almost uniform convergence and
then we have convergence in measure and then we have that almost uniform convergence is
the same as almost uniform Cauchy. And then convergence in measure is the same as Cauchy

1n measure.

By this I mean if you have a sequence that is almost uniformly convergent, then it is almost
uniformly Cauchy, it is almost uniformly Cauchy, then it is almost uniformly convergent.
Similarly, convergence in measure in place of Cauchy in measure implies convergence

measure. So, these we have proved.

Now, convergence almost everywhere and convergence almost uniform convergence implies

convergence almost everywhere we have seen, almost uniform convergence also implies



convergence and measure we have seen. Now, convergence almost everywhere implies

almost uniform convergence provided the measure is finite.

Similarly, convergence almost everywhere in place convergence in measure provided the
measure is finite. Now, convergence in measure implies almost uniform convergence for the
subsequence because, convergence in measure means Cauchy in measure the Cauchy in
measure means is a subsequence which is almost uniformly Cauchy and therefore, almost

uniformly convergent.

Similarly, convergence in measure also means convergence everywhere for a
subsequence. So, these are the various inter relationships which we have. Now, if you
have a sequence which is convergence in measure the subsequence which converges
almost everywhere we assured using the Borel Cantelli Lemma, but you can also know
use do it this way, convergence in measure means is almost uniformly Cauchy
subsequence, which means almost uniformly convergent subsequence and that
subsequence will imply first point wise everywhere and therefore, this another proof

using these two arrows, which you can do for that particular theorem.

So, now we want to do what is the relationship of convergence in measure to the Algebraic
operations alpha fn plus beta gn where fn, gn convergence and measure what is fn and gn and

then what about mod fn and such things and therefore we will see those things next time.



