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We will now study a new type of convergence. This is called Convergence in Measure. So,

we will then study its properties and also its relationship to the other types of convergence

which you have seen convergence point wise convergence almost everywhere point wise

again and convergence almost uniformly so, all these interconnections we will see.

Definition: Let be a measure space and a a sequence of real-valued(𝑋,  𝑆,  µ) {𝑓
𝑛
}

measurable functions defined on , we say that a converges in measure to a function to a𝑋 𝑓
𝑛

real-valued measurable function if we have𝑓   ∀  ε > 0

.𝑙𝑖𝑚
𝑛→∞

µ({𝑥ϵ𝑋|  |𝑓
𝑛
(𝑥) − 𝑓 (𝑥)| ≥ ε}) = 0

Think about it carefully. So, you take should go to 0 asµ({𝑥ϵ𝑋|  |𝑓
𝑛
(𝑥) − 𝑓 (𝑥)| ≥ ε})

. So, this is a different type of convergence. We call this convergence in measure and𝑛 → ∞

we write



𝑓
𝑛
→µ   𝑓 .

The  symbol over the arrow which will mean that it converges in measure.µ

We say that sequence is Cauchy in measure if and that such{𝑓
𝑛
} ∀  ε > 0 ∀  δ > 0 ∃ 𝑁ϵℕ

that for all 𝑚, 𝑛 ≥ 𝑁

.µ({𝑥ϵ𝑋|  |𝑓
𝑛
(𝑥) − 𝑓 (𝑥)| ≥ ε}) < δ

That means, can be made as small as you like for Nµ({𝑥ϵ𝑋|  |𝑓
𝑛
(𝑥) − 𝑓 (𝑥)| ≥ ε})

sufficiently large. So, that is the corresponding idea of Cauchy.
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So, we would like to know what are the various properties of this convergence, what is its

relationship to convergence point wise etc. and then of course, the usual question

convergence does it imply Cauchy in measure Cauchy in measure does not imply

convergence in measures and so on and so forth. Let us start with the following proposition.

Proposition: Let finite measure space (that means ). the(𝑋,  𝑆,  µ)  µ(𝑋) < ∞ {𝑓
𝑛
}

real-valued measurable functions defined on convergence almost everywhere to . Then𝑋 𝑓

of course, real-valued and measured then 𝑓
𝑛
→µ   𝑓 .



(So, if you are in a finite measure space then convergence almost everywhere the in place,

convergence in measure.)

Proof:  Let (the set where the sequence diverges),𝐷 = {𝑥ϵ𝑋| 𝑓
𝑛
(𝑥)⇸ 𝑓(𝑥) }

then we are given that (given). Let ,µ(𝐷) = 0  ε > 0

(To show mu of Em epsilon tends to 0 as m tends to𝐸
𝑚

(ε) = {𝑥ϵ𝑋| |𝑓
𝑛
(𝑥) − 𝑓 (𝑥)| ≥ ε}

infinity.)

(Now, you what is the set where the does not converge does not converge means there exists

an set for every you have that exists in such that thisε > 0 𝑛 𝑚 ≥ 𝑛  |𝑓
𝑛
(𝑥) − 𝑓 (𝑥)| ≥ ε

is the definition of not converging to , does not convert means, for every𝑓 (𝑥) 𝑓
𝑛
(𝑥) 𝑓(𝑥)  𝑛

we can find an such that . So, this is the so, now, this is nothing𝑚 ≥ 𝑛 |𝑓
𝑛
(𝑥) − 𝑓 (𝑥)| ≥ ε

but . So, this quantity here is the definition of the limsup. So, we have
ε>0
⋃ 𝑙𝑖𝑚𝑠𝑢𝑝

𝑛→∞ 
𝐸

𝑚
(ε)

already seen this. )

.𝐷 =
ε>0
⋃

𝑛=1

∞

⋂
𝑚=𝑛

∞

⋃ 𝐸
𝑚

(ε) =
ε>0
⋃ 𝑙𝑖𝑚𝑠𝑢𝑝

𝑛→∞ 
𝐸

𝑚
(ε)

Now you have that since and these are all subsets of that and therefore, thisµ(𝐷) = 0

implies
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.µ(𝑙𝑖𝑚𝑠𝑢𝑝
𝑛→∞ 

𝐸
𝑚

(ε)) = 0

Now, (Therefore, everything is a finite measure in the set and therefore, we haveµ(𝑋) < ∞,

given this either done it or we have done it in the exercises)

.0 = µ(𝑙𝑖𝑚𝑠𝑢𝑝
𝑛→∞ 

𝐸
𝑚

(ε)) ≥ 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛→∞ 

µ(𝐸
𝑚

(ε))

So, you have to use the continuity from about to prove these results here and now, you know

that

0 ≤ 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛→∞ 

µ(𝐸
𝑛
(ε)) ≤ 𝑙𝑖𝑚𝑠𝑢𝑝

𝑛→∞ 
µ(𝐸

𝑛
(ε))) ≤ 0

⇒     𝑙𝑖𝑚
𝑛→∞ 

µ(𝐸
𝑛
(ε)) = 0 𝑖. 𝑒. 𝑓

𝑛
→µ   𝑓 .
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Example: Not true if so, again you take , , andµ(𝑋) =+ ∞ 𝑋 = ℕ 𝑆 = 𝑃(ℕ)

.µ = 𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

So, .µ(𝐸) < ε(< 1) = ϕ

(So, this implies convergence in measure when you want to say that this measure goes to 0

this should become empty after some time and that means, everything for every X for all N it

should be less than or equal to less than epsilon.)

That means,



uniformly.𝑓
𝑛
→µ   𝑓 ⇔ 𝑓

𝑛
→ 𝑓

So, again as earlier, consider

.𝑓
𝑛

= χ
{1,2.........𝑛}

Then pointwise but not uniform so, you have point wise convergence, but that𝑓
𝑛
→ 𝑓 ≡ 1

does not imply uniform convergence in the infinite measure space.
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Now, what about convergence in measure? So, convergence in measure does it imply

convergence point wise almost everywhere so, again the answer is no. So, we have the

following example.

Example: Take equipped with the Lebesgue measure and then you define𝑋 = [0, 1)

.χ
𝑛

𝑖 = χ
[ 𝑖−1

𝑛 , 𝑖
𝑛 )

, 1 ≤ 𝑖 ≤ 𝑛

So, now, you look at the sequence

.{χ
1

1,   χ
2

1,  χ
2

2,  χ
3

1,    χ
3

2   χ
3

3,...........}



Let exactly i, such that and for𝑥 ϵ [0, 1).  ∀  𝑛ϵℕ  ∃ 1 ≤ 𝑖 ≤ 𝑛 χ
𝑛

𝑖(𝑥) = 1 χ
𝑛

𝑗(𝑥) = 0

all .𝑗 ≠ 𝑖

(So, that means if you look at this equation you will have a 1 for the first one then one of

these will be 1 the other will be 0, then one of these three will be 1 and the rest will be 0 and

so on. So, there will be 1 which is  popping up all the time.)

So, this implies,

does not converge for any .{χ
𝑛

𝑖(𝑥)} 𝑥

So therefore this is you do not have pointwise convergence, but what about convergence in

measures?

So, if you take 1 then0 < ε <

.𝑚
1
({𝑥ϵ[0, 1) |   |χ

𝑛

𝑖(𝑥)| ≥ ε})= 𝑚
1
([ 𝑖−1

𝑛 , 𝑖
𝑛 )) = 1/𝑛 → 0
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Therefore, the sequence converges to 0 in measure.

( So, it converges in measure, but it does not converge point wise, but if you look at this

carefully, you can look at the sequence once again and then there exists a subsequence which

you can pick out namely just take 1 from each n 1 the i where it is 1 or if you take the 1 from

where it is 0 for each n, then also you will get the subsequence which converges. So, you

have a sub sequence which will converge point wise. )



Proposition: Let measure spaces sequence of measurable real-valued(𝑋,  𝑆,  µ) {𝑓
𝑛
}

function converging in measure to real valued measurable. Then has a subsequence𝑓 𝑓
𝑛

which converges to almost everywhere.𝑓
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(So, prove we can do this in several ways, and I am going to use now to indicate a proof on

the proof later on. So, we are going to use the Borel Catelli Lemma)

Proof: , then there exists an F, and for all x belongs𝐹
𝑖
ϵ 𝑆 

𝑖=1

∞

∑ µ(𝐹
𝑖
) < ∞ µ(𝐹 ) = 0 𝑥ϵ 𝐹𝑐,

to at most finitely many . This is the Borel Cantelli Lemma.𝐹
𝑖

So, we are going to use this. We have proved this earlier and this is with nice application of

that sector of the lemma. There are several nice applications of Boreal Catelli especially in

probability theory, which you can say so, therefore, in measure theory also and therefore, this

is one such.

So, we are going to define

.𝐸
𝑛,𝑚

= {𝑥ϵ𝑋| |𝑓
𝑛
(𝑥) − 𝑓 (𝑥)| ≥ 1/𝑚 }

∀ 𝑛, 𝑓
𝑛
→µ   𝑓 ⇒ µ(𝐸

𝑛,𝑚
) → ∞ 𝑎𝑠 𝑛 → ∞.

such that .⇒  ∃  𝑛
0
(𝑚) µ(𝐸

𝑛,𝑚
) < 1

2𝑚

Since is fixed so I am going to choose in this fashion. So, now if you take𝑚



𝑛=1

∞

∑ µ(𝐸
𝑛

0
(𝑚),𝑚

) <+ ∞.
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By the Borel Catelli such that and∃ 𝐸 µ(𝐸 ) = 0 𝑥ϵ 𝐸𝑐

x belongs to utmost finitely many .⇒  𝐸
𝑛

0
(𝑚),𝑚

such that , .               ⇒  ∃ 𝑁  ∀ 𝑚 ≥ 𝑁 𝑥 ∉ 𝐸
𝑛

0
(𝑚),𝑚

That is, |𝑓
𝑛

0
(𝑚)

(𝑥) − 𝑓 (𝑥)| < 1/𝑚  ∀ 𝑚 ≥ 𝑁

This means that

.𝑓
𝑛

0
(𝑚)

(𝑥) → 𝑓 (𝑥) ∀ 𝑥ϵ 𝐸𝑐

That is a. e.𝑓
𝑛

0
(𝑚)

→ 𝑓

So, this completes the proof so, we have a very nice application. So, given any kind of

sequence converging in measure you can always find a subsequence which converges

pointwise almost everywhere.
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So, finally, before closing this section we will of course, return to this instead we will study

much more but for the moment we will the last reason they want to prove in this session is

that the limit you see whenever you have a sequence which converges in some sense you

want the limit to be unique.

So, this is what we are going to say here now.

Proposition: Let measure spaces sequence of measurable real-valued(𝑋,  𝑆,  µ) {𝑓
𝑛
}

function on . , g real-valued measurable functions such that , . Then𝑋 𝑓 𝑓
𝑛
→µ 𝑓  𝑓

𝑛
→µ 𝑔

almost everywhere.𝑓 = 𝑔

(which is as good as unique because when you know what you mean by convergence in

measure it means that the limit of the set where the disagrees does not converge has to be 0.

So, except on the set of measures 0 these two are equal and therefore, this is as good as

saying that the limit is unique. So, you have uniqueness up to equality almost everywhere.)

Proof: Let . So, you then take a setε > 0

{𝑥| |𝑓(𝑥) − 𝑔(𝑥)| ≥ ε} ⊂ {𝑥|  |𝑓
𝑛
(𝑥) − 𝑓(𝑥)| ≥ ε/2} ∪ {𝑥|  |𝑓

𝑛
(𝑥) − 𝑔(𝑥)| ≥ ε/2}

because you have

.|𝑓 − 𝑔| ≤ | 𝑓
𝑛

− 𝑓| + |𝑓
𝑛

− 𝑔|



So, if both of these are less than then will be less than and therefore, if youε/2 |𝑓 − 𝑔| ε

have at least one of these two must be true and therefore, you have this|𝑓(𝑥) − 𝑔(𝑥)| ≥ ε

contained in this.

But, , and therefore, to 0 and also goes to 0𝑓
𝑛
→µ 𝑓  𝑓

𝑛
→µ 𝑔 |𝑓

𝑛
(𝑥) − 𝑓(𝑥)| |𝑓

𝑛
(𝑥) − 𝑔(𝑥)|

as and this implies that𝑛 → ∞

({ .µ |𝑓(𝑥) − 𝑔(𝑥)| ≥ ε}) = 0,   ∀ ε > 0
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So, the set

.{𝑥ϵ𝑋| |𝑓(𝑥) − 𝑔(𝑥)| > 0} =
𝑛=1

∞

⋃ {𝑥ϵ𝑋| |𝑓(𝑥) − 𝑔(𝑥)| ≥ 1/𝑛}

⇒ µ({𝑥ϵ𝑋| |𝑓(𝑥) − 𝑔(𝑥)| > 0}) = 0

i.e. a.e.𝑓 = 𝑔

So, that proves so, we will continue with convergence and measure next time.


