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We now do a new chapter where we will study various types of convergence. So, the first section

in this is Egorov’s theorem:

Egorov’s Theorem: Let be a finite measure space that means . Let be a(𝑋, 𝑆, µ) µ(𝑋) < ∞ 𝑓
𝑛

sequence of real-valued measurable functions converges almost everywhere to a real valued

measurable function . (So, we saw in the exercises that if is not complete, then it is not𝑓 µ

necessarily that be measurable. So, we are now specifying that the limit is also a measurement𝑓

function.)

Then given any , a measurable set such that andε > 0 ∃ 𝐹 ⊂ 𝑋 µ(𝐹) < ε



uniformly on . (So, we have convergence almost everywhere, then this convergence is𝑓
𝑛

→ 𝑓 𝐹𝑐

practically like uniform convergence except, it may not be everywhere, so, then it is not obvious

you cannot have an arbitrary convergence sequence to be uniformly convergent. But what is

remarkable is if you are in the finite measure space, then you can choose the smallest set,

measure with set with as small measures as you like. So, set on the complement the sequence is

in fact uniformly convergent.)

Proof: Let such that uniformly  on . So, you set .𝐸ϵ𝑆 µ(𝐸) = 0 𝑓
𝑛

→ 𝑓 𝐸𝑐 𝑌 = 𝐸𝑐

So, then given . You define𝑛, 𝑚ϵℕ

.𝐸
𝑛,𝑚

=
𝑖=𝑛

∞

⋂ {𝑥ϵ𝑌| |𝑓
𝑖
(𝑥) − 𝑓(𝑥)| < 1/𝑛}

Clearly, .𝐸
1,𝑚

⊂ 𝐸
2,𝑚

⊂... ⊂ 𝐸
𝑛,𝑚

⊂......      ∀𝑚

If , then and N such that for all we have𝑥ϵ𝑌 𝑓
𝑛
(𝑥) → 𝑓(𝑥) ∀ 𝑚,  ∃ 𝑖 ≥ 𝑁,  

.|𝑓
𝑖
(𝑥) − 𝑓(𝑥)| < 1/𝑚

That means, .𝑥ϵ𝐸
𝑛,𝑚

⇒ 𝑌 =
𝑛=1

∞

⋃ 𝐸
𝑛,𝑚

  ∀𝑚

So, .µ(𝑌) = µ(𝑋) <+ ∞

(Because equals union E is the whole and E has measure 0.)𝑌 𝑌 𝑓(𝑋)

Now, therefore, you have

.µ(𝑌) = 𝑙𝑖𝑚
𝑛→∞

µ(𝐸
𝑛,𝑚

)

(And because of the finiteness you have)

such that⇒  ∃ 𝑛
0
(𝑚) ϵ ℕ



.µ(𝑌\𝐸
𝑛

0
(𝑚),𝑚

) = µ(𝑌) − µ(𝐸
𝑛

0
(𝑚),𝑚

) < ε/2𝑚

Now, you say , then G measurable.𝐺 =
𝑛=1

∞

⋃ (𝑌\𝐸
𝑛

0
(𝑚),𝑚

)

And you have

.µ(𝐺) <
𝑚=1

∞

∑ ε/2𝑚 = ε

Now, you say 𝐹 = 𝐸 ∪ 𝐺, µ(𝐹) = µ(𝐺) < ε.

And what is ? is precisely𝐹𝑐 𝐹𝑐

.𝐹𝑐 =
𝑚=1

∞

⋂ 𝐸
𝑛

0
(𝑚),𝑚

Let , choose ,  says that .η > 0 𝑚 1/𝑚 <  η

So, now, if ,  therefore .𝑥ϵ𝐹𝑐 𝑥ϵ𝐸
𝑛

0
(𝑚),𝑚

⊂ 𝐸
𝑛,𝑚

 ∀ 𝑛 ≥ 𝑛
0
(𝑚)

So, if , ,  you have   𝑥ϵ𝐹𝑐 ∀ 𝑛 ≥ 𝑛
0
(𝑚)

< .|𝑓
𝑖
(𝑥) − 𝑓(𝑥)| < 1/𝑚 η

So, this is true ,  and therefore, you have ∀  𝑥ϵ𝐹𝑐

uniformly on and ,𝑓
𝑛

→ 𝑓    𝐹𝑐 µ(𝐹) < ε

and therefore, that completes the proof of Egorov’s theorem.
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Example: Not true for infinite measure spaces.  So, let us take

, and counting measures.𝑋 = ℕ 𝑋 = 𝑃(ℕ) µ =

µ(𝐹) < ε < 1 ⇒ µ(𝐹) = 0 ⇒ 𝐹 = ϕ

Therefore, uniform convergence on is the same as uniform convergence on . So, now, we   𝐹𝑐 ℕ

will look at , .{𝑓
𝑛
} 𝑓

𝑛
= χ

{1,2,...,𝑛}

Then 1. But this convergence is not uniform. So, Egorov’s theorem fails in the case of𝑓
𝑛

→ 𝑓 ≡

infinite measures.
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So, inspired by Egorov's theorem we make the following:

Definition: Let measure space } real-valued measurable functions defined on .(𝑋, 𝑆, µ) {𝑓
𝑛

𝑋

We say that the sequence converges almost uniformly (here you must, this almost is not in the

sense of what we have been saying before about almost everywhere) to real-valued measurable

function if and uniformly on .𝑓 ε > 0 ∃ 𝐹 ⊂ 𝑋, µ(𝐹) < ε 𝑓
𝑛

→ 𝑓 𝐹𝑐

So, what does Egorov’s theorem say that if you have a finite measure space convergence almost

everywhere is the same as convergence almost uniformly.

Converse of Egorov’s theorem is true in any measure space. So, if you have almost uniform

convergence then you have convergence almost everywhere.

Proposition: Let measure space } real-valued measurable functions defined on .(𝑋, 𝑆, µ) {𝑓
𝑛

𝑋

(real valued measurable function) almost uniformly almost everywhere.𝑓
𝑛

→ 𝑓 ⇒  𝑓
𝑛

→ 𝑓
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Proof:  Let . You chose such that and uniformly on .𝑚ϵℕ 𝐹
𝑚

ϵ𝑆 µ( 𝐹
𝑚

) < 1/𝑚 𝑓
𝑛

→ 𝑓 𝐹
𝑚

𝑐

So, , ,𝐹 =
𝑛=1

∞

⋂ 𝐹
𝑚

µ( 𝐹 ) = 0

(because it is less than . So, for each m. So, .)µ( 𝐹
𝑚

) < 1/𝑚  µ( 𝐹
𝑚

) < 1/𝑚 µ( 𝐹 ) = 0

and .𝐹 𝑐 =
𝑚=1

∞

⋃ 𝐹
𝑚

𝑐

And in any of these sets, so if It belongs to some and this implies𝑥ϵ𝐹 𝑐 𝐹
𝑚

𝑐

𝑓
𝑛
(𝑥) → 𝑓(𝑥)

that is, a. e.𝑓
𝑛

→ 𝑓
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So, whenever you have a notion of convergence you also have associated notion of cauchy and

then usually convergence will always implies cauchy and one is always interested in knowing

whether cauchy implies convergence that is like important thing which we had the completeness

of the reals in the complex numbers namely if the cauchy sequence has a limit.

So, the same idea we will always see whenever we introduce a notion of convergence, we will

have an associated notion of cauchyness and then convergence should imply cauchy and cauchy

should imply convergence.

Definition: Let measure space } real-valued measurable functions defined on .(𝑋, 𝑆, µ) {𝑓
𝑛

𝑋

We say is almost uniformly cauchy if , , , } is uniformly{𝑓
𝑛
} ∀ ε > 0 ∃ 𝐹 ϵ 𝑆 µ( 𝐹 ) < ε {𝑓

𝑛

cauchy on .𝐹𝑐

Clearly if } converges almost uniformly then there exists an F such that ,{𝑓
𝑛

µ( 𝐹 ) < ε 𝑓
𝑛

converges to f uniformly on .𝐹𝑐

} uniformly cauchy on .⇒ {𝑓
𝑛

𝐹𝑐

So, convergence almost uniformly Cauchy is almost uniform.⇔



So, we want to know about the converse. Suppose you have a sequence which is cauchy almost

uniformly, is it going to be convergent almost uniformly?
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Proposition. Let measure space } almost uniformly cauchy sequence of real(𝑋, 𝑆, µ) {𝑓
𝑛

valued measurable functions. Then there exists real-value measurable function on such that𝑓 𝑋

almost uniformly.𝑓
𝑛

→ 𝑓

Proof: Let There exists , , } almost uniformly cauchy  on .𝑚ϵℕ 𝐹
𝑚

ϵ 𝑆 µ(𝐹
𝑚

) < 1/𝑚 {𝑓
𝑛

𝐹
𝑚

𝑐



So, you said , , ……..𝐹 =
𝑛=1

∞

⋂ 𝐹
𝑚

µ(𝐹 ) = 0 𝐹𝑐 =
𝑛=1

∞

⋃ 𝐹
𝑚

, }uniformly cauchy.∀ 𝑥ϵ𝐹𝑐 {𝑓
𝑛
(𝑥)

Define

.𝑓(𝑥) = {
   0   𝑖𝑓  𝑥ϵ𝐹

𝑙𝑖𝑚
𝑛→∞

𝑓
𝑛
(𝑥)  𝑖𝑓  𝑥ϵ𝐹𝑐

    

Now, you define

      𝑔
𝑛

= χ
𝐹𝑐𝑓𝑛

so, is measurable.𝑔
𝑛

If , you have .𝑥ϵ𝐹 𝑔
𝑛
(𝑥) = 𝑓(𝑥) = 0

If , .𝑥ϵ𝐹𝑐 𝑔
𝑛
(𝑥) = 𝑓

𝑛
(𝑥) = 𝑓(𝑥)

everywhere is measurable.⇒ 𝑔
𝑛
→ 𝑓 ⇒ 𝑓

Now, on , such that .𝑓
𝑛
→ 𝑓 𝐹𝑐 𝑥ϵ𝐹𝑐 ∃ 𝑚 𝑥ϵ𝐹𝑐

𝑚

<1/m, on .µ(𝐹
𝑚

) 𝑓
𝑛
→ 𝑓    𝐹𝑐

𝑚

almost uniformly.                                     ⇒𝑓
𝑛
→ 𝑓

So, given any you can choose m large enough such that it is less than is less than , andη 1
𝑚 η

then therefore, you will have that this belongs to it converges uniformly on the set. Therefore,

this implies that almost uniformly. So, this completes about almost uniform⇒𝑓
𝑛
→ 𝑓

convergence and almost cauchyness. Next time we will take up another notion of convergence

and examine its properties.


