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The Cantor function:

We will now look at the cantor function so please recall the cantor set, so we took 0, 1 and

then we removed the middle third and then with the remaining intervals we removed the

middle third and so on and what was left was the cantor set and this set was an uncountable

set of measure 0 and which was nowhere dense, so now the counter functions like the cantor



sets provides a lot of interesting examples and counter examples to illustrate various fine

points in the theory of lebesgue integration.

Several constructions are possible and always the final properties of the function which you

get are the same and they also serve the same purpose, so we will describe one such

construction, so before we do that to make it easier let me just illustrate a certain basic

construction, let us take an interval a & b and then you have a linear function so this is 𝑓(𝑎)

and this is .𝑓(𝑏)

So, then so 𝑓(𝑥) = 𝑓(𝑎) + 𝑓(𝑏)−𝑓(𝑎)
(𝑏−𝑎) (𝑥 − 𝑎)

for all x in a b, so now we divide this interval into three equal parts so these are and so𝑐
1

𝑐
1

𝑐
𝑗

= 𝑎 + 𝑗 𝑏−𝑎
3( );   𝑗 = 1, 2,...

the value at ,𝑐
1

𝑓(𝑐
1
) = 2𝑓(𝑎)+𝑓(𝑏)

3 .

Now, we then define the next iterate of this function so what we do is we so again let me

draw it again so this is f of a, f of b, this is a, this is b and you have and so up to we𝑐
1

𝑐
2

𝑐
1

follow the function and then from to we go horizontally so this is and then from𝑐
1

𝑐
2

𝑓(𝑐
1
)

here you climb up to get the new function so this is the new function so g of x is equal to f of

x if x belongs to a and c equal to it is a constant if x belongs to and then you𝑐
1

𝑓(𝑐
1
) 𝑐

1
,  𝑐

2

have plus minus by b minus into x minus so this is for x belonging to,𝑓(𝑐
1
) 𝑓(𝑏) 𝑓(𝑐

1
) 𝑐

1
𝑐

1

sorry , this is because that is the same value. But b minus into x minus for x𝑐
2

𝑓(𝑐
1
) 𝑐

2
𝑐

2

belong to b.𝑐
2

So, this will be the new function which you have so you follow the function up to then you𝑐
1

do a constant and then you do this, so now a simple calculation will show that the slope on 𝑐
2

b will be twice that in ac 1 so this slope and this slope will be exactly double the slope of this

that is a very standard straightforward calculation which you can do from this, from whatever

is given to you.
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So, now let us consider the interval [0 1] and we take the function and then we𝑓
0
(𝑥) = 𝑥

apply this procedure so we have here [0 1], so now we apply this procedure so we have 1 by

3 here and you have 2 by 3 so the in this part up to this part we will keep the same and then

we will go horizontally up to 2 by 3 and from 2 by 3 we will go climb up now what we will

do is we will leave this constant portion simple.

So, here we have you have 1 by 9 and then 2 by 9 and then similarly you have two portions

here, so here we will go along this function in this interval and then we will go as a constant

here and then climb up to this function, similarly here we will go along this function up to

this point up to the one third point then go horizontally up to this and then you construct so

this is this is and this is so once it is a constant it is always constant.𝑓
1

𝑓
0

𝑓
2

So, now will be you will have to divide these intervals into three equal parts, follow the𝑓
3

function on the first part go horizontally in the second part and climb up to the third part so

this is the construction which we are going to repeatedly do at different scales. So, in this

manner we can construct, so in this way we iteratively construct continuous piecewise linear

non decreasing functions fn, if fn is constant on any sub interval then for all m greater equal

to n fm equals fn equals same constant on that sub interval, once it is a constant you do not

meddle with it you always apply this construction only in the non-constant parts that you

divide by 3 and go on.

So, the union, notice that the union of sub intervals where fn is constant is precisely the set x

n of middle thirds used in the construction of the cantor set so go back we are I am using the



same notation here, so the maximum slope, so also is less than or equal to for all n𝑓
𝑛

𝑓
𝑛+1

because when you do this construction you will see that you are following then you are

falling below and then you are climbing up so each time the function is less than the previous

sorry and each is monotonic non decreasing.𝑓
𝑛+1

 𝑓
𝑛

So, sequence is decreasing point wise but the function is increasing is an increasing function.

Now, maximum slope occurs in the last subinterval, each time we apply the procedure the

slope is doubling and therefore thus in the last sub interval of length 1 by 3 power n the slope

will be 2 power n because we started with the slope 1 in the original function and every time

in the last interval it is going to double we applied it n times and therefore we get a 2 power n

as a slope there.

Therefore, for all x in [0 1] by the mean value theorem we have that mod 𝑓
𝑛
(𝑥) − 𝑓

𝑛+1
(𝑥)

this need not be a modulus because this is a non negative quantity this is less than or equal to

the maximum slope which you have in , 1 minus 1 by 3 power n plus 1 and that is𝑓
𝑛+1

𝑓
𝑛+1

less than equal to 2 by 3 power n plus 1, now sigma 2 by 3 power n is convergent because of

the geometric series and therefore this implies that fn is uniformly Cauchy.

So, if you have sigma a n such that a n minus a n plus 1 is less than r n sigma r n is

convergent this means that a n is Cauchy, sorry not sigma a n you have a sequence a n

subsequent terms are in a convergent series and this is Cauchy this is a easy fact to prove so

you should be able to convince yourself about this.
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And this is uniform for all x in x we have and therefore you have uniformly Cauchy. So, you

have a uniformly Cauchy sequence on an interval that means that f n converges to f uniformly

on [0 1] and is continuing because it is a uniform limit of continuous function is a𝑓 𝑓

continuous function and it is also non-decreasing and this function is called the cantor

function.
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So, first non-decreasing for every n implies is not decreasing to is constant on each𝑓
𝑛

𝑓

subinterval of c complement where c equals cantor set, we saw that once you it is a constant

its constant in fn all along and these sets are precisely the middle third sets and therefore they

are the complement of the cantor set and then 3, and so now define𝑓(0) = 0 𝑓(1) = 1

, y in 0 then psi is strictly monotonically increasing because I have addedφ(𝑦) = 𝑦 + 𝑓(𝑦)

y here this is a non decreasing function I have added a strictly increasing function therefore

this is you have.

And you have and therefore psi is from [0 1] onto [0 2] and this is aφ(0) = 0 φ(1) = 2

bijection so we have phi from [0 2] to [0 1] inverse then is also monotonically increasingφ



and you have that for every x in 0 because you have is the inverse𝑥 = φ(𝑥) + 𝑓(φ(𝑥)) φ

function now if x is becoming equal to y then you have is greater than equal to phi of yφ(𝑥)

and , f is non decreasing, f non-decreasing and therefore this is𝑥 − 𝑦 = φ(𝑥) − φ(𝑦)

greater than equal to 0 and therefore this shows that for all x greaterφ(𝑥) − φ(𝑦) ≤ 𝑥 − 𝑦,

than or equal to 1 or in other words mod and therefore is|φ(𝑥) − φ(𝑦)| ≤ |𝑥 − 𝑦| φ

continuous as well.
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So, now is a bijection implies it maps disjoint sets into disjoint sets, onto, so if I containedφ

in C complement is a sub interval then f restricted to I equals some constant which is some let



us say c of I therefore equals x plus c I on I, so psi just translates each sub interval of cφ(𝑥)

complement.

So, for each I contained in c complement sub interval and c complement𝑚
1
(φ(𝐼)) = 𝑚

1
(𝐼)

is the disjoint union of all such sub intervals and maps disjoint sets into disjoint sets andφ

therefore you have m 1 of c complement equals sorry, complement equals m 1 of cφ(𝑐)

complement and that is equal to 1.

So, this implies that itself has to be equal to 2 minus m 1 of (c) , (c) complement𝑚
1
(𝑐) φ φ

and that is equal to 1. So, in other words this function maps c a set of measure 0 on to (c)φ φ

a set of measure 1 so of (c) equal to 1 which is strictly positive therefore there exists S𝑚
1

φ

contained in size c, S not lebesgue measurable, we saw that every positive set contains a non

lebesgue measurable subset, so let M equal to inverse of c S and of course you can call thisφ

as of S because is nothing but psi inverse so M is this and so M is c but M is contained inφ φ

C, measure of C is 0 the cantor set therefore by completeness of the lebesgue measure M is

lebesgue measurable.
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Claim, M is not Borel measurable, so you see we have if this claim is satisfied so we had P

and then we had R and then we had B1 then we had L1 and then we had power set of R and

we saw explicitly there are non measurable subsets so this is here we gave a unsubstantiated

but cardinality argument to show that this is also strict but now we are giving an example of

M which is lebesgue measurable but it is not Borel measurable.

So, if not, M Borel measurable implies s equals phi inverse of M borel measurable because

phi is continuous and so borel measurable that implies if some set is borel measurable so

automatically lebesgue measurable, S is lebesgue measurable but that is not true because we

have S is not limit measurable so this is not true.

Therefore, the claim is substantiated so we have M is lebesgue measurable thus but not Borel

measurable, finally let us set capital phi equals chi of M so this is a lebesgue measurable

function because M is a lebesgue measurable set therefore it is a lebesgue measurable

function.

Now, you take , so zeta is a composition of lebesgue measurable function and aζ = Φ ◦ φ

continuous function, continuous functions are both so lebesgue measurable, small phi is φ

continuous implies Borel measurable implies lebesgue measurable and you are taking the

composition of two lebesgue measurable functions, so now if you took zeta inverse of the

singleton 1 this equal to set of all x in 0 2 what is zeta is capital of small , this is phi ofφ φ(𝑥)

x belongs to M which is equal to inverse of M and that is S but this is not lebesgueφ

measurable.



But so zeta is not lebesgue measurable because we did this exercise we know that if the

converse is not true but this proposition if a function is measurable then the inverse of every

singleton has to be measurable and here you have a function which is 1 the inverse of the

singleton 1 is not measurable and therefore the original function cannot be measurable

therefore composition of measurable functions need not be measurable, so this cantor set will

have many more applications.
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So, before we close I want to make some this thing about almost everywhere now that we

have, what do we mean by this statement which we will have, so measurable space(𝑋, 𝑆, µ) 

a measure on then we say is a measure space, we have a measurable spaceµ 𝑆 (𝑋, 𝑆, µ) 

which means you have x and sigma algebra and now if you specify the measure also(𝑋, 𝑆, µ) 

then you call it a measure space. So, we say a property holds almost everywhere if there

exists a set E contained in x (E) equal to 0 such that the property holds on E complement soµ

when a property holds almost everywhere we mean it is true except possibly on a set of

measure 0.
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So, let us give me, give some examples, so a measurable real valued function, extended real

valued function is finite almost everywhere so when you say almost everywhere the short

form is a is finite almost everywhere if there exists a set E and f x belongs to R forµ(𝐸) = 0

all x in E complement, f g measurable functions on a measure space x is mu we say f equal to

g almost everywhere if there exists a E contained in x and for all xµ(𝐸) = 0 𝑓(𝑥) = 𝑔(𝑥)

in E complement.

Given a sequence of measurable functions fn and a measurable function f defined on x we say

converges to f almost everywhere if there exists a E contained in x and𝑓
𝑛

µ(𝐸) = 0 𝑓
𝑛
(𝑥)

converges to for every x in e complement so this gives you an idea of how we use the𝑓(𝑥)

word almost everywhere.
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So, in this context we will also make the following

Definition:

is a measure space measurable function, is essentially bounded if there(𝑋, 𝑆, µ) 𝑓: 𝑋 → ℝ 𝑓

exists a such that set of𝑀 > 0

has measure zero.{𝑥 ∈ 𝑋 | 𝑓(𝑥) ≥ 𝑀}

and then we define norm

||𝑓||
∞

= 𝑖𝑛𝑓{𝑀 > 0 | µ({𝑥 ∈ 𝑋 | |𝑓(𝑥)| ≥ 𝑀}) = 0} = 𝑒𝑠𝑠𝑒𝑛𝑡𝑖𝑎𝑙 𝑠𝑢𝑝𝑟𝑒𝑚𝑢𝑚 𝑜𝑓 𝑓.

is called the essential supremum that means except for the set of measure 0 this is the

smallest number, smallest lower bond, upper bound sorry.


