Measure and Integration
Professor S. Kesavan
Department of Mathematics
Institute of Mathematical Sciences
Lecture 20

4.1 — Measurable functions
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So, we define what is a measurable function so we continue with the properties of the

measurable functions, so here is a

Proposition: (X, S) measurable space, f real valued measurable function on X then |f] is

measurable, so
proof: Leta € R, a > 0 so we have to look at
fxeX: |fW<a=xeX:|fW]>an{xeX: f(x)<a}
and therefore this belongs to S because f is measurable.

And if a < 0 then the set is empty and therefore you have that so therefore |f| is measured,
remark I leave it as an exercise for you to check, converse not true you can easily construct a

counter example so we will leave it that, now

Corollary: (X,S) measurable space f and g measurable real valued functions then

max{f, g}, min{f, g} are measurable, in particular if f is measurable real valued function

then f+ = max {f,0}and f =— min{f, 0} are measurable.
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Pproof: max{f, g} = %(f +g+|f — g

min{f,g} == + g — If — gl

so f and g measurable means f — g measurable |f — g| measurable f + g, |f + |
measurable multiplied by half its measurable so this is measurable similarly mean is also

measurable.

remark, f+ = is called the positive part of f and f = negative part of f, note that

. + - . .
positive f , f are both non-negative functions,

f=f-f fl=f +f.
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So lemma this we have, this kind of thing we have done many times,

Lemma: (X, S) measurable space. f real value measurable function defined on X. Then for

every E € R Borel f_l(E) is Borel.

Proof: S = {E c R| f_l(E) is Borel }. So empty setand R € S~ and then

FIEY = (' E),  fUE)=Uf (E)



From this you get that S~ is a sigma algebra. By measurability all open sets are in E we
proved this cf corollary proved earlier therefore open sets are all in S~ so implies all open sets

are in S, in place all Borel sets and that completes the proof of this theorem.
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Corollary: (X,S) measurable space f real valued measurable function on X, then f is

measurable if and only if f (U) € S for every U Borel.
Proof: so f measurable then by lemma f _1(U) € S for every U Borel

Conversely f _1(U) € S for every U Borel implies



F (o) €S, Va€ER
and then f is real valued implies f is measurable, so this proves,

So now measurability can be thought it can be seen is nothing but the imitation of continuity

suppose [ have two topological spaces (X, S) and (Y, S ,) then what do you say that

f: X = Y is continuous that means f_l(U) open for, in X, for all U openinY.

So, similarly for measurability we are saying we have (X, $) measurable space and then f is a
real valued function and so on R we take the Borel sigma algebra B 1 and then inverse image

of every Borel set is a measurable set that is what we are saying so just like the definition of
continuity in fact if you have two measurable spaces (X,S) and (Y, S') one could talk of

e o1 ' :
f: X > Y measurable if f (U) €S foreveryU € S so this could be an abstract
definition of measurability between abstract measurable spaces but we are restricting our
attention to real valued functions, so for real valued functions measurability essentially

inverse image of every Borel set should be measurable that is all that we are saying.
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Proposition: (X, S) measurable space f measurable real valued function

®: R — R Borel measurable then ® ° f is measurable on X,

Proof: {(x € X: (® ° f)(x) > o} =f (& (a,»)) € S



Now, this being a Borel measurable function is a Borel set and by the previous lemma this

belongs to s because previous corollary therefore this belongs to s and that proves the result.

Remark: In general composition of measurable functions is not measurable, we will see
an example of this but if you have that the second function is Borel measurable R to R then

the composition is measurable so that is the moral of the story.
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Proposition: (X, S) measurable space { fn} sequence of extended real valued functions on
X, measurable functions, so you take for x € X you define h(x) = sup fn(x),

h(x) = inf fn(x) because these are extended real valued implies f and g are measurable,

Proof: let a € R so you take

[o¢]

{x € X|h(x) > a} = U{x € X|f () > a}e S,

n=1
[ee]

{x € X|g(x) > a}= ﬂ{xEX|fn(x) > a}eS

n=1

and therefore h and g are measurable.
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Corollary (X, S) measurable space { fn} sequence of real valued measurable functions then

lim sup f and lim inf f are measurable.
n— o n n— o n

In particular, if fn(x) - f(x), Vx € X then f is measured, so the limit of measurable

functions convergence point wise everywhere is measurable,

Proof: so you take g = sup this is measurable and then lim supg = in ,
‘gn m=n’ n n— o 'gn n'gn

so measurable.
Similarly, you take hn = inf fn is measurable therefore lim inf hn = sup_ hn this is
n— oo

measurable, so fn(x) - f(x), Vx € X then you have f is nothing but
f )= fx), vxeX

f = lim sup fn = lim inf fn and therefore this implies that f is measurable.
n—> oo n—> o
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Definition: (X,S) measurable space,. A simple function on X is a function of the form we

have seen this before
k
f=> ax, Ai are measurable functions on X.
i=1 i

So when we say a simple function it is automatically measurable because of the example

where we saw chi of Al, is measurable if and only if Ai is measurable.

So, these simple functions are the building blocks of integration theory so we will lebesgue
integration theory starts with defining the integral on simple functions and then going on to
non-negative functions, general functions and so on, so we have the following very very

important theorem which you must remember very well.
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So theorem, it is a very important theorem

Theorem: Let (X,S) measurable space and f non-negative extended real valued
measurable function. Then f is the increasing limit of a sequence of non-negative simple
functions on X, so we are going to so every non-negative measurable function which is
extended real value can be written as the increasing limit that means you can find the

sequence fn of X which is monotonic increasing and the limit is f(x).

Proof: n fixed positive integerso 1 < i < n2"

— )
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so what are you doing here so I am taking 0 and then I am taking n so whenever x inverse
image of n plus infinity is given by fn and this portion here I am going to divide each sub
interval of length 1 by 2 power n so there are n times 2 power n such intervals and if f falls in

any particular interval here then I put Eni is the inverse image of f here so this is how I am

defining this thing.

So, f measurable, so f measurable implies Eni F _are all measurable and then of course if I

define

n2 1
— l_
f. = X + El = Xg

n,i

so what am I saying so in other words if f(x) is greater than equal to n then we say

fn(x) equals n, if f x is less than n then there exists a unique 1 such that i minus 1 by 2 power

n is less than equal to f(x) is less than i by 2 power n and then we are going to put

f0 =+

So, if f(x) falls after then then you put this lower value if it is before n then it will fall in one
of these intervals and then you take the lower end of that interval to do that so this implies of

course that f n(x) < f(x) for all f(xX and this is of course a simple function.
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So, we just have to show two things that to show

fon+1' v, fan’ ’

n

so if f(x) is greater equal to n plus 1 so this implies that fn+ 1(x) = ;—J}l and then
fn(x) = n since it is bigger than equal to n plus 1 is bigger than n and therefore this is equal

to n so this implies that fn(x) is less than equal to fn+1(x), so if fn(x) less than f'x less than
n plus 1 then you have fn+ 1(x) equal to % to the n plus 1 for some i such that f (x)

belongs to % to the n plus 1, 2; to the n plus 1 which will be contained in n n plus 1.

Because we are going to divide like that and now further and f n of x will still be n and

therefore this implies that fn(x) < fn+ 1(x), now finally if f (x) is less than n then there

exists an i this is less than or equal to n 2 power n such that f(x) belongs to % power n i

by 2 power n, but this is also equal to le_ L power n plus 1 % to the n plus 1.

So, what is f (%), f (x) =

(x), now this interval here is can be written as

2i—2 2i—
2n+1 tOJ

to the n plus 1, union L tothen plus 1, — L to the n plus 1, so f (x) equal



n

to either if it falls in this interval it is [ZZ;Zn + 1] which is [;—171 + 1] whichis f (x) or

2i—1

it can be to the n plus 1 which is bigger than l;—l power equals f n(x). Therefore, for all

VX, fn(x) < fn+ 1(x) so this is a monotonically increasing sequence.
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So, now if f (x) = oo this implies that fn(x) = n for all n and so fn(x) T f(x),if
f (x) < oois strictly less than plus infinity there exists a positive integer N such that
f(x)<N

, then for all n greater equal to N by construction you have that f(x) — fn(x) which is the

same as |f(x) — fn(x)| because this is non negative is less than 1 by 2 power n.

Because you see its in this interval if f falls in this interval you are putting the lower end

point as a value as fn(x) so the distance betweenf (x) and fn(x) is always less than 1 by 2
power n in this case and therefore this implies that fn(x) increases to f (x), so this proves
the theorem, very important theorem, so every non negative measurable function is the

increasing limit of non negative simple functions.
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Corollary: Let (X, S) measurable space and f real valued measurable function then f is

the limit of simple functions,
+ p—
Proof: f =f —f

because its real value you do not have ambiguity in the definition both of these cannot be

infinity and therefore this is well defined and now you take

0<¢ are simple, 0 < Y are simple, ¢ Tf+, L|Jan_

therefore you have that ¢ - lIJn - f T f = f and then ¢ minus lIJn is a simple. So, that

proves this corollary.

So, this completes the fundamental properties of measurable functions, next time we will take
up a very particular case of a function called the cantor function which is like the cantor set
the cantor function they are closely related anyway, they are immeasurable source of counter

examples.



