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So, we define what is a measurable function so we continue with the properties of the

measurable functions, so here is a

Proposition: measurable space, real valued measurable function on then is(𝑋, 𝑆) 𝑓 𝑋 |𝑓|

measurable, so

proof: Let so we have to look atα ∈ ℝ,   α > 0

{𝑥 ∈ 𝑋 :  |𝑓(𝑥)| < α} = {𝑥 ∈ 𝑋 :  |𝑓(𝑥)| >− α} ∩ {𝑥 ∈ 𝑋 :  𝑓(𝑥) < α}

and therefore this belongs to because is measurable.𝑆 𝑓

And if then the set is empty and therefore you have that so therefore is measured,α ≤ 0 |𝑓|

remark I leave it as an exercise for you to check, converse not true you can easily construct a

counter example so we will leave it that, now

Corollary: measurable space and measurable real valued functions then(𝑋, 𝑆) 𝑓 𝑔

, are measurable, in particular if is measurable real valued function𝑚𝑎𝑥{𝑓, 𝑔} 𝑚𝑖𝑛{𝑓, 𝑔} 𝑓

then and are measurable.𝑓+ = max {𝑓, 0} 𝑓− =− 𝑚𝑖𝑛{𝑓, 0}
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Pproof: 𝑚𝑎𝑥{𝑓, 𝑔} = 1
2 (𝑓 + 𝑔 + |𝑓 − 𝑔|)

𝑚𝑖𝑛{𝑓, 𝑔} = 1
2 (𝑓 + 𝑔 − |𝑓 − 𝑔|)

so and measurable means measurable measurable𝑓 𝑔 𝑓 − 𝑔 |𝑓 − 𝑔| 𝑓 + 𝑔, |𝑓 + 𝑔|

measurable multiplied by half its measurable so this is measurable similarly mean is also

measurable.

remark, is called the positive part of and negative part of , note that𝑓+ = 𝑓 𝑓− = 𝑓

positive , are both non-negative functions,𝑓+ 𝑓−

.𝑓 = 𝑓+ − 𝑓−              |𝑓| = 𝑓+ + 𝑓−
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So lemma this we have, this kind of thing we have done many times,

Lemma: measurable space. real value measurable function defined on Then for(𝑋, 𝑆) 𝑓 𝑋.

every Borel is Borel.𝐸 ⊂ ℝ 𝑓−1(𝐸)

Proof: So empty set and and then𝑆∼ = {𝐸 ⊂ ℝ | 𝑓−1(𝐸) 𝑖𝑠 𝐵𝑜𝑟𝑒𝑙 }. ℝ ∈ 𝑆∼

𝑓−1(𝐸𝑐) = (𝑓−1(𝐸))𝑐,        𝑓−1(
𝑖

⋃ 𝐸
𝑖
) =

𝑖
⋃ 𝑓−1(𝐸

𝑖
)



From this you get that is a sigma algebra. By measurability all open sets are in we𝑆∼ 𝐸

proved this cf corollary proved earlier therefore open sets are all in so implies all open sets𝑆∼

are in , in place all Borel sets and that completes the proof of this theorem.𝑆∼
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Corollary: measurable space real valued measurable function on then is(𝑋, 𝑆) 𝑓 𝑋, 𝑓

measurable if and only if for every Borel.𝑓−1(𝑈) ∈ 𝑆 𝑈

Proof: so measurable then by lemma for every Borel𝑓 𝑓−1(𝑈) ∈ 𝑆 𝑈

Conversely for every Borel implies𝑓−1(𝑈) ∈ 𝑆 𝑈



𝑓−1((α, ∞)) ∈ 𝑆,    ∀ α ∈ ℝ

and then is real valued implies is measurable, so this proves,𝑓 𝑓

So now measurability can be thought it can be seen is nothing but the imitation of continuity

suppose I have two topological spaces and then what do you say that(𝑋, 𝑆) (𝑌, 𝑆')

is continuous that means open for, in , for all open in .𝑓:  𝑋 →  𝑌  𝑓−1(𝑈) 𝑋 𝑈 𝑌

So, similarly for measurability we are saying we have measurable space and then is a(𝑋, 𝑆) 𝑓

real valued function and so on we take the Borel sigma algebra B 1 and then inverse imageℝ

of every Borel set is a measurable set that is what we are saying so just like the definition of

continuity in fact if you have two measurable spaces and one could talk of(𝑋, 𝑆) (𝑌, 𝑆')

measurable if so this could be an abstract𝑓:  𝑋 →  𝑌 𝑓−1(𝑈) ∈ 𝑆  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑈 ∈ 𝑆'

definition of measurability between abstract measurable spaces but we are restricting our

attention to real valued functions, so for real valued functions measurability essentially

inverse image of every Borel set should be measurable that is all that we are saying.
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Proposition: measurable space measurable real valued function(𝑋, 𝑆) 𝑓

Borel measurable then is measurable on ,Φ:  ℝ → ℝ Φ ◦ 𝑓 𝑋

Proof: 𝑥 ∈ 𝑋 :  (Φ ◦ 𝑓)(𝑥) > α{ } = 𝑓−1(Φ−1(α, ∞)) ∈ 𝑆



Now, this being a Borel measurable function is a Borel set and by the previous lemma this

belongs to s because previous corollary therefore this belongs to s and that proves the result.

Remark: In general composition of measurable functions is not measurable, we will see

an example of this but if you have that the second function is Borel measurable to thenℝ ℝ

the composition is measurable so that is the moral of the story.
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Proposition: measurable space sequence of extended real valued functions on(𝑋, 𝑆) {𝑓
𝑛
}

, measurable functions, so you take for you define ,𝑋 𝑥 ∈ 𝑋 ℎ(𝑥) = 𝑠𝑢𝑝 𝑓
𝑛
(𝑥)

because these are extended real valued implies are measurable,ℎ(𝑥) = 𝑖𝑛𝑓 𝑓
𝑛
(𝑥) 𝑓 𝑎𝑛𝑑 𝑔

Proof: let so you takeα ∈ ℝ

,𝑥 ∈ 𝑋| ℎ(𝑥) > α{ } =
𝑛=1

∞

⋃ 𝑥 ∈ 𝑋| 𝑓
𝑛
(𝑥) > α{ } ∈ 𝑆

𝑥 ∈ 𝑋| 𝑔(𝑥) > α{ } =
𝑛=1

∞

⋂ 𝑥 ∈ 𝑋| 𝑓
𝑛
(𝑥) > α{ } ∈ 𝑆

and therefore and are measurable.ℎ 𝑔
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Corollary measurable space sequence of real valued measurable functions then(𝑋, 𝑆) {𝑓
𝑛
}

are measurable.
𝑛 ∞
lim
→

𝑠𝑢𝑝 𝑓
𝑛
 𝑎𝑛𝑑  

𝑛 ∞
lim
→

𝑖𝑛𝑓 𝑓
𝑛
  

In particular, if then is measured, so the limit of measurable𝑓
𝑛
(𝑥) → 𝑓(𝑥),    ∀𝑥 ∈ 𝑋 𝑓

functions convergence point wise everywhere is measurable,

Proof: so you take this is measurable and then ,𝑔
𝑛

= 𝑠𝑢𝑝
𝑚≥𝑛

𝑓
𝑛 𝑛 ∞

lim
→

𝑠𝑢𝑝 𝑔
𝑛

= 𝑖𝑛𝑓
𝑛 

𝑔
𝑛

so measurable.

Similarly, you take is measurable therefore this isℎ
𝑛

= 𝑖𝑛𝑓 𝑓
𝑛 𝑛 ∞

lim
→

𝑖𝑛𝑓 ℎ
𝑛

= 𝑠𝑢𝑝
𝑛 

ℎ
𝑛
 

measurable, so then you have f is nothing but𝑓
𝑛
(𝑥) → 𝑓(𝑥),    ∀𝑥 ∈ 𝑋

𝑓
𝑛
(𝑥) → 𝑓(𝑥),    ∀𝑥 ∈ 𝑋

and therefore this implies that is measurable.𝑓 =
𝑛 ∞
lim
→

𝑠𝑢𝑝 𝑓
𝑛

=
𝑛 ∞
lim
→

𝑖𝑛𝑓 𝑓
𝑛

𝑓
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Definition: measurable space,. A simple function on is a function of the form we(𝑋, 𝑆) 𝑋

have seen this before

𝑓 =
𝑖=1

𝑘

∑ α
𝑖
χ

𝐴
𝑖

 ,    𝐴
𝑖 
 𝑎𝑟𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑛 𝑋.

So when we say a simple function it is automatically measurable because of the example

where we saw chi of is measurable if and only if is measurable.𝐴
𝑖

𝐴
𝑖

So, these simple functions are the building blocks of integration theory so we will lebesgue

integration theory starts with defining the integral on simple functions and then going on to

non-negative functions, general functions and so on, so we have the following very very

important theorem which you must remember very well.
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So theorem, it is a very important theorem

Theorem: measurable space and non-negative extended real valued𝐿𝑒𝑡 (𝑋, 𝑆) 𝑓

measurable function. Then is the increasing limit of a sequence of non-negative simple𝑓

functions on , so we are going to so every non-negative measurable function which is𝑋

extended real value can be written as the increasing limit that means you can find the

sequence of which is monotonic increasing and the limit is .𝑓
𝑛

𝑋 𝑓(𝑥)

Proof: n fixed positive integer so 1 ≤ 𝑖 ≤ 𝑛2𝑛 ;



𝐸
𝑛,𝑖

= 𝑓−1 [ 𝑖−1

2𝑛 ,  𝑖

2𝑛 )( ),           𝐹
𝑛

= 𝑓−1([𝑛,  ∞)).

so what are you doing here so I am taking 0 and then I am taking n so whenever x inverse

image of n plus infinity is given by fn and this portion here I am going to divide each sub

interval of length 1 by 2 power n so there are n times 2 power n such intervals and if falls in𝑓

any particular interval here then I put is the inverse image of f here so this is how I am𝐸
𝑛,𝑖

defining this thing.

So, f measurable, so f measurable implies are all measurable and then of course if I𝐸
𝑛,𝑖

  𝐹
𝑛

define

𝑓
𝑛

= 𝑛χ
𝐹

𝑛

+
𝑖=1

𝑛2𝑛

∑ 𝑖−1

2𝑛 χ
𝐸

𝑛,𝑖

so what am I saying so in other words if is greater than equal to n then we say𝑓(𝑥)

equals n, if f x is less than n then there exists a unique i such that i minus 1 by 2 power𝑓
𝑛
(𝑥)

n is less than equal to is less than i by 2 power n and then we are going to put𝑓(𝑥)

.𝑓
𝑛
(𝑥) = 𝑖−1

2𝑛

So, if falls after then then you put this lower value if it is before n then it will fall in one𝑓(𝑥)

of these intervals and then you take the lower end of that interval to do that so this implies of

course that for all and this is of course a simple function.𝑓
𝑛
(𝑥) ≤ 𝑓(𝑥) 𝑓(𝑥𝑋
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So, we just have to show two things that to show

,      ,𝑓
𝑛

≤ 𝑓
𝑛+1

,    ∀ 𝑛,     𝑓
𝑛

↑ 𝑓

so if is greater equal to n plus 1 so this implies that and then𝑓(𝑥) 𝑓
𝑛+1

(𝑥) = 𝑖−1

2𝑛+1

since it is bigger than equal to n plus 1 is bigger than n and therefore this is equal𝑓
𝑛
(𝑥) = 𝑛

to n so this implies that is less than equal to , so if less than f x less than𝑓
𝑛
(𝑥) 𝑓

𝑛+1
(𝑥) 𝑓

𝑛
(𝑥)

n plus 1 then you have equal to to the n plus 1 for some i such that𝑓
𝑛+1

(𝑥) 𝑖−1
2 𝑓 (𝑥)

belongs to to the n plus 1, to the n plus 1 which will be contained in n n plus 1.𝑖−1
2

𝑖

2

Because we are going to divide like that and now further and f n of x will still be n and

therefore this implies that , now finally if is less than n then there𝑓
𝑛
(𝑥) ≤𝑓

𝑛+1
(𝑥) 𝑓 (𝑥)

exists an i this is less than or equal to n 2 power n such that belongs to power n i𝑓(𝑥) 𝑖−1
2

by 2 power n, but this is also equal to power n plus 1 to the n plus 1.2𝑖−1
2

2𝑖

2

So, what is , ,what is , now this interval here is can be written as𝑓
𝑛
(𝑥) 𝑓

𝑛
(𝑥) = 𝑖−1

2𝑛 𝑓
𝑛+1

(𝑥)

to, to the n plus 1, union to the n plus 1, to the n plus 1, so equal2𝑖−2

2𝑛+1
2𝑖−1

2

2𝑖−1

2

2𝑖

2
𝑓

𝑛+1
(𝑥)



to either if it falls in this interval it is which is which is or2𝑖−2

2𝑛+1 , 𝑛 + 1⎡⎢⎣
⎤⎥⎦

𝑖−1

2𝑛 , 𝑛 + 1⎡⎢⎣
⎤⎥⎦

𝑓
𝑛
(𝑥)

it can be to the n plus 1 which is bigger than power equals . Therefore, for all2𝑖−1

2

𝑖−1

2
𝑓

𝑛
(𝑥)

so this is a monotonically increasing sequence.∀ 𝑥 ,    𝑓
𝑛
(𝑥) ≤ 𝑓

𝑛+1
(𝑥)
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So, now if this implies that for all n and so , if𝑓 (𝑥) = ∞ 𝑓
𝑛
(𝑥) = 𝑛 𝑓

𝑛
(𝑥) ↑ 𝑓(𝑥)

is strictly less than plus infinity there exists a positive integer such that𝑓 (𝑥) < ∞   𝑁

𝑓 (𝑥) < 𝑁

, then for all n greater equal to by construction you have that which is the𝑁 𝑓(𝑥) − 𝑓
𝑛
(𝑥)

same as because this is non negative is less than 1 by 2 power n.|𝑓(𝑥) − 𝑓
𝑛
(𝑥)|

Because you see its in this interval if falls in this interval you are putting the lower end𝑓

point as a value as so the distance between and is always less than 1 by 2𝑓
𝑛
(𝑥) 𝑓 (𝑥) 𝑓

𝑛
(𝑥)

power n in this case and therefore this implies that increases to , so this proves𝑓
𝑛
(𝑥) 𝑓 (𝑥)

the theorem, very important theorem, so every non negative measurable function is the

increasing limit of non negative simple functions.
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Corollary: Let measurable space and real valued measurable function then is(𝑋, 𝑆) 𝑓 𝑓

the limit of simple functions,

Proof: 𝑓 = 𝑓+ − 𝑓−

because its real value you do not have ambiguity in the definition both of these cannot be

infinity and therefore this is well defined and now you take

0 ≤ φ
𝑛
   𝑎𝑟𝑒 𝑠𝑖𝑚𝑝𝑙𝑒 ,   0 ≤ ψ

𝑛
  𝑎𝑟𝑒 𝑠𝑖𝑚𝑝𝑙𝑒 ,   φ

𝑛
↑ 𝑓+ ,   ψ

𝑛
↑ 𝑓−

therefore you have that and then minus is a simple. So, thatφ
𝑛

− ψ
𝑛

→ 𝑓+ − 𝑓− = 𝑓 φ
𝑛

ψ
𝑛

proves this corollary.

So, this completes the fundamental properties of measurable functions, next time we will take

up a very particular case of a function called the cantor function which is like the cantor set

the cantor function they are closely related anyway, they are immeasurable source of counter

examples.


