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Measurable Functions:

Today we will start a new chapter. So, we will now talk about Measurable Functions. So,

first we will study some of the basic properties and definition of measurable functions. So, 𝑋

is a non empty set and is a algebra will work only with sigma algebra in future on . So,𝑆 σ 𝑋

then we will say , is called a measurable space; it means it has all the structures(𝑋, 𝑆)

necessary to define a measure. So, it has a non empty set and you have a sigma algebra and

so, if possible one can define a measure on it.

So, an extended real valued function on is a function which takes values in𝑓 𝑋

so, you allow infinite values also. So, nowℝ ∪ {+ ∞, − ∞}

Definition measurable space, extended real valued function defined on . We(𝑋, 𝑆) 𝑓 𝑋

say that is a measurable function, if𝑓 α ∈ ℝ,   𝑤𝑒 ℎ𝑎𝑣𝑒 

𝑓−1 (α, + ∞]( ) ∈ 𝑆

i.e., .𝑥 ∈ 𝑋 :  𝑓(𝑥) > α{ } ∈ 𝑆,     ∀  α ∈ ℝ



So, then such a function is called a measurable function.
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So, if . We say that is Borel measurable if it is measurable with respect to𝑋 = ℝ𝑁 𝑓 𝑋 = 𝐵
𝑁

It is Lebesgue measurable if it is measurable with respect to . So, if you have the𝑋 = 𝐿
𝑁

Lebesgue sigma algebra and the function is measurable. Then you say it is a Lebesgue

measurable function and otherwise, if it is if the sigma algebra is the Borel sigma algebra

then you see this Borel measurable.
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Remark, Borel measurable in place of course, is Lebesgue measure but not the𝑓 𝑓

converse. So,

first proposition, there is nothing sacred about the way we have defined measurability. So,

you have the following various equivalent forms access measurable space extended real𝑓

valued function on , the following are the equivalent.𝑋

Proposition:, measurable space. extended real valued function on The(𝑋, 𝑆) 𝑓 𝑋.

following are equivalent:

(i) ∀ α ∈ ℝ ,    𝑓−1 (α, + ∞]( ) ∈ 𝑆,   𝑖. 𝑒.,  𝑓 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒.

(ii) ∀ α ∈ ℝ ,    𝑓−1 [α, + ∞]( ) ∈ 𝑆

(iii)  ∀ α ∈ ℝ ,    𝑓−1 [− ∞, α)( ) ∈ 𝑆

(iv) ∀ α ∈ ℝ ,    𝑓−1 [− ∞, α]( ) ∈ 𝑆

So, one of each of these in place others and therefore, you could have defined measurability

using any of them.

Proof, (i) implies (ii), so



  𝑓−1 [α, + ∞]( ) =
𝑛=1

∞

⋂ 𝑓−1((α − 1
𝑛 ,  ∞]) ∈ 𝑆.

so (ii) implies (iii), so 𝑓−1 [− ∞, α)]( ) = 𝑓
−1

[α, + ∞]( )𝑐 ∈ 𝑆.

. Let us say plus infinity always because this belongs to S, so, this complement is also S.

So, (iii) implies (iv)

𝑓−1 [− ∞, α]( ) =
𝑛=1

∞

⋂ 𝑓−1([−  ∞, α − 1
𝑛 )) ∈ 𝑆

and therefore, again this belongs because by (iii) each of this is in and intersection is in𝑆 𝑆 𝑆

. And then

(iv) to (i) 𝑓−1 (α, + ∞]]( ) = 𝑓
−1

[− ∞, α]( )𝑐 ∈ 𝑆.

and consequently you have all these things are equal.
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Corollary 1:, measurable space, extended real valued function which is(𝑋, 𝑆). 𝑓

measurable then α ∈ ℝ,   𝑤𝑒 ℎ𝑎𝑣𝑒 

(i) 𝑓−1 {α}( ) ∈ 𝑆

(ii) 𝑈 ⊂ ℝ 𝑜𝑝𝑒𝑛  ⇒   𝑓−1(𝑈) ∈ 𝑆.

Proof, so let us take thenα ∈ ℝ

𝑓−1({α}) =
𝑛=1

∞

⋂ 𝑓−1 α − 1
𝑛 , + ∞( ) ∩ − ∞, α + 1

𝑛⎡⎣ ⎤⎦( ) ∈ 𝑆.

If α =+ ∞,    𝑓−1({+ ∞}) =
𝑛=1

∞

⋂ 𝑓−1 (𝑛, + ∞]( ) ∈ 𝑆.

If α =− ∞,    𝑓−1({− ∞}) =
𝑛=1

∞

⋂ 𝑓−1([− ∞, − 𝑛)) ∈ 𝑆.

Now, if then you have(𝑎, 𝑏) ⊂ ℝ

𝑓−1(𝑎, 𝑏) = 𝑓−1(− ∞, 𝑏) ∩ 𝑓−1(𝑎, + ∞) ∈ 𝑆.

Now, every open set of is a countable union of intervals and therefore, this corollary is𝑈

proved.
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So, now, we give some examples, so

Example: let us take , then continuous, continuous and real valued𝑋 = ℝ𝑁 𝑓: 𝑋 → ℝ

function, I am not taking extended real valued functions, then is both Lebesgue and Borel𝑓

measurable because

𝑓−1((α, + ∞]) = 𝑓−1((α, + ∞)) = 𝑜𝑝𝑒𝑛 ∈ 𝐵𝑜𝑟𝑒𝑙 𝑠𝑒𝑡 

So, this is equal to open and therefore, which belongs to Borel and Lebesgue sigma g plus.

So, this is a really easy example.

So, example two, so, here we give a counterexample. So, here we proved in this corollary,

that of every singleton is measurable if is measurable, the converse is not true. So,𝑓−1  𝑆 𝑓−1

of singletons all singletons can be measurable, but still the function may fail to be

measurable. So, let us take the following example.

Let us take ,  not measurable. So, does not belong to . Now, you define𝐸 ⊂ [0, 1) 𝐸 𝐿
1

𝑓(𝑥) =  𝑥  𝑖𝑓  𝑥 ∈ 𝐸

=− 𝑥  𝑖𝑓  𝑥 ∈ [0, 1)\𝐸

=− 2  𝑖𝑓  𝑥 ∉ [0, 1).

So, then let us compute what is the

𝑓−1({α}) = ℝ\[0. 1)   𝑖𝑓 α =− 2

= {− α}  𝑖𝑓  α ∈ [0, 1)\𝐸

=− 2  𝑖𝑓  α ∈ 𝐸

= Φ  ,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

so, you can really easily verify all this. So, all of these belong to S. So, all of these, so, every

is in this. Now if you take𝑓−1({α})

𝑓−1((0, + ∞]) = 𝐸 ∉ 𝐿
1



which are the various only place where it takes positive values is on and this is equal to𝐸 𝐸

but this does not belong to implies not Lebesgue measure. 𝐿
1

𝑓
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So, measurability of singletons is not a test then example again.

Example 3: Let measurable space and let . Then you take(𝑋, 𝑆) 𝐴 ⊂ 𝑋

𝑓−1( (α, + ∞]) =  𝑋   𝑖𝑓  α < 0

= 𝐴   𝑖𝑓  0 ≤ α < 1

= Φ   𝑖𝑓  α ≥ 1.

and therefore, the same place is measurable if and only if . So, whenever weχ
𝐴

= 𝑓 𝐴 ∈ 𝑆

deal with simple functions we will deal with simple measurable functions. That means, we

are talking about characteristic functions of measurable sets.

Finally,

Example 4: measurable space and then is measurable(𝑋, 𝑆) 𝑓(𝑥) = 𝐶 ∈ ℝ,        ∀𝑥 ∈ 𝑋 𝑓

because, if

α ∈ ℝ,    𝑓−1((α, + ∞]) = 𝑋  𝑖𝑓   α < 𝐶

= Φ   𝑖𝑓  α ≥ 𝐶.

So, we have some examples of it.
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So, now we will prove a proposition which is useful. So,

Proposition: Let measurable space measurable real value not extended real(𝑋, 𝑆) 𝑓, 𝑔

valued, real valued functions on , then are all𝑋,    𝐶 ∈ ℝ 𝑓 + 𝑔,  𝑓 − 𝑔,  𝐶𝑓,  𝑓 + 𝐶,   𝑓𝑔

measurable.

Proof, one, let us . So,𝐶 ∈ ℝ,   𝐶 > 0

𝑓−1([− ∞, α)) = 𝑥 ∈ 𝑋  :   𝐶𝑓(𝑥) < α{ } = 𝑥 ∈ 𝑋  :   𝑓(𝑥) < α
𝐶{ }

and that of course is measureable because f is measurable. Similarly, if



𝑓−1([− ∞, α)) = 𝑥 ∈ 𝑋  :   𝐶𝑓(𝑥) < α{ } = 𝑥 ∈ 𝑋  :   𝑓(𝑥) > α
𝐶{ }

So, for every alpha this is measurable therefore, by the characterization we have so, this

implies that cf measurable.

(ii) let ,α ∈ ℝ,   

𝑥 ∈ 𝑋 :  𝑓(𝑥) + 𝑔(𝑥) < α{ } = 𝑥 ∈ 𝑋  :   𝑓(𝑥) < α − 𝑔(𝑥){ }

that means, you can put in a rational between and alpha minus and therefore,𝑓(𝑥) 𝑔(𝑥)

=
𝑟∈𝚀
⋃ 𝑥 ∈ 𝑋  :   𝑓(𝑥) < 𝑟{ } ∩ 𝑥 ∈ 𝑋  :   𝑔(𝑥) < α − 𝑟{ }( )

so, each of this is in and is countable therefore, this belongs to .𝑆 𝚀 𝑆

So, is measurable, is nothing but , is measurable is𝑓 + 𝑔 𝑓 − 𝑔 𝑓 + (− 𝑔) 𝑓 − 𝑔

measurable by the first argument and therefore, this measurable.
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(iii), measurable because constant functions are measurable, f is measurable sum of𝑓 + 𝐶

measurable functions is measurable which we have already proved. So, finally, we want to

prove the product.

(iv) So, let ,α ∈ ℝ,  α > 0  

𝑥 ∈ 𝑋 :  𝑓(𝑥)2 > α{ } = 𝑥 ∈ 𝑋  :   𝑓(𝑥) > α{ } ∪ 𝑥 ∈ 𝑋  :   𝑓(𝑥) <− α{ }



and therefore, this implies, so this will belong to . If ,𝑆 α ≤ 0

𝑥 ∈ 𝑋 :  𝑓(𝑥)2 > 0{ } = 𝑋

belongs to and therefore, from this we deduce. So, this implies it is measurable.𝑆 𝑓2

Now, 𝑓𝑔 = 1
4 (𝑓 + 𝑔)2 − (𝑓 − 𝑔)2[ ].

Now is measurable so, the square is measurable. is measurable, so the square𝑓 + 𝑔 𝑓 + 𝑔

is measurable. The difference of measurable functions is measurable multiplying by a

constant 1 by 4 is measurable, so, this is measurable. So, this proves.
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Remark: About proposition holds whenever given functions are well defined when

are extended real value. Functions if not defined on at where𝑓, 𝑔 𝑓 + 𝑔 𝑥

and , you cannot define f plus g. So, whenever the function 𝑓(𝑥) =+ ∞ 𝑔(𝑥) =− ∞

is well defined then the previous proofs will all go through other ways. So, we will

continue with the properties of measurable functions next.


