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(1) : Let : be continuous and increasing. For define𝑔 ℝ → ℝ 𝑎, 𝑏ϵ𝑃

µ
𝑔
([𝑎, 𝑏)) = 𝑔(𝑏) − 𝑔(𝑎).

Then there exists a unique complete measure on -algebra containing all the Borel setsµ
𝑔

σ

and extending .µ
𝑔

(So, this is called the Lebesgue Stieltjes measure.)

Solution: Exactly as in the case we have a measure on .𝑔(𝑥) = 𝑥, ℝ

extending : , , and disjoint.µ
𝑔

𝐸ϵℝ 𝐸 =
𝑘=1

𝑛

⋃ 𝐼
𝑘

𝐼
𝑘
ϵ𝑃

Then you define

.µ
𝑔
(𝐸) =

𝑘=1

𝑛

⋃ µ
𝑔
(𝐼

𝑘
)



Once you do this then the caratheodory method gives .µ
𝑔

So, you go to the hereditary - algebra generated by it which is turned out to be again theσ

power set because you are dealing only with the and again and therefore, and then you𝑃 ℝ

will get the -measurable sets which will give you a complete measure and we know from theµ

abstract theory that it contains and therefore, the sigma algebra generated by namely allℝ ℝ

the Borel sets. So, this completes proof of this.
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(2): Let be the unit circle. Show that a Borel measure on ( is a topological𝑆1 ⊂ ℝ2 ∃ 𝑆1  𝑆1

space because it inherits the topology of and therefore, you have open sets and the sigmaℝ2

algebra generated by those open sets are called the Borel sets in .) such that𝑆1 µ(𝑆1) = 1

and is invariant under rotations.µ
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Solution:  Take . So, is a bijection. So, if you define𝑇: [0, 2𝛑) → 𝑆1 𝑇(θ) = 𝑒𝑖θ

,𝑆 = {𝐸 ⊂ [0, 2𝛑)| 𝑇(𝐸) = 𝐵𝑜𝑟𝑒𝑙}



So obviously and is a - algebra because of this objection, so it is closedϕ, [0, 2𝛑)ϵ 𝑆 𝑆 σ

under complementation and of course, under the union, so, this - algebra.σ

Now if .𝑈 ⊂ [0, 2𝛑) 𝑜𝑝𝑒𝑛

So, there will be two possibilities ) and this implies is also open in by𝑈 ⊂ (0, 2𝛑 𝑇(𝑈) 𝑆1

the mapping here.

And then if you can also have you is something like then[0, α)

is Borel.𝑇(0) = {1} ∪ {𝑇[0, α)} 

Again and therefore, all open sets so, implies Borel sets contained in . So, similarly for𝑆

.  therefore, E Borel if and only if Borel.𝑇−1 𝑇(𝐸)

Now,  we will take E and then you define⊂ 𝑆1

, then is a measure on .µ 𝑆1
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Now, we want to show that rotation invariance. So, you have led is rotation of by an𝑇
θ

0

𝑆1

. So, you take this circle and you rotate it you get back the circle again and so, you haveθ
0

this now,



(E)=T( + (E)),𝑇
θ

0

θ
0

𝑇−1

and  therefore, .𝑇
θ

0

(𝐸) = 1
2𝛑 𝑚

1
(θ

0
+ 𝑇−1(𝐸)) =  1

2𝛑 𝑚
1
(𝑇−1(𝐸)) = µ(𝐸 )

Therefore, it is invariant under rotations.
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(3): Consider the triangle with vertices (0, 0), (1, 0) and (0, 1) and call this triangle T.

Compute .𝑚
2
(𝑇)

{So, we know what it is because we know that essentially this area but we have to prove that

and therefore we have it is half base into height so, the answer should be half we know this.

So, let us try to show it exactly. }

Solution: T is a triangle with vertices (0, 0)  (1, 0), (0, 1). Now, you look at

given by𝐴: ℝ2 → ℝ2

A 𝑥, 𝑦( ) = (1 1) + (0 − 1; − 1  0)(𝑥 𝑦)

I am writing just a reflection along this line, what are you doing here this is nothing but the

reflection along this diagonal here.

, , .𝐴 0, 0( ) = (1 1) 𝐴 0, 1( ) = (0 1) 𝐴 1, 0( ) = (1 0)

So, if you call the upper  triangle T’, then

is nothing but by translation in radians, this (1, 1) does not matter.𝑚
2
(𝑇')

So, 𝑚
2
(𝑇') = |𝑑𝑒𝑡(0, − 1; − 1 0)|𝑚

2
(𝑇) = 𝑚

2
(𝑇).

And then the single line is one dimensional. So, it is measured as 0 and therefore, we have



.𝑚
2
((0, 1) × (0, 1)) = 𝑚

2
(𝑇) + 𝑚

2
(𝑇') = 2𝑚

2
(𝑇)

.⇒ 𝑚
2
(𝑇) = 1

2

So, this is a formal proof of this.
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(b): T triangle with vertices , Show that ,(𝑥
𝑖
, 𝑦

𝑖
) 𝑖 =  1,  2,  3 . 𝑚

2
(𝑇) = 1

2 |𝑑𝑒𝑡(𝐴)|

where A =[ 1  1  1; x1  x2  x3; y1  y2  y3].

So, this formula you would have been taught when you were doing analytic geometry given

the three vertices how to find the area of the triangle. So, we are going to form a proof of this

formula here. Again, we use the same trick as the previous exercise part.

So, we define

.𝐴 ( 𝑥  𝑦) =  (𝑥
1
 𝑦

1
) + [𝑥

2
− 𝑥

1
  𝑥

3
− 𝑥

1
;  𝑦

2
− 𝑦

1
  𝑦

3
− 𝑦

1
](𝑥 𝑦)



Then   (0, 0) ,→ (𝑥
1
 𝑦

1
)

,(1,  0) → (𝑥
2
 𝑦

2
)

and .(0,  1) → (𝑥
3
 𝑦

3
)

So, .𝑚
2
(𝑇) = 1

2 |𝑑𝑒𝑡([𝑥
2

− 𝑥
1
  𝑥

3
− 𝑥

1
;  𝑦

2
− 𝑦

1
  𝑦

3
− 𝑦

1
])|

Now, if you look at the determinant

𝑑𝑒𝑡([ 1  1  1 ;  𝑥
1
  𝑥

2
  𝑥

3
;  𝑦

1
  𝑦

2
  𝑦

3
]) = 𝑑𝑒𝑡([ 1  0  0 ;  𝑥

1
  𝑥

2
− 𝑥

1
  𝑥

3
− 𝑥

1
;  𝑦

1
  𝑦

2
− 𝑦

1
  𝑦

3
− 𝑦

1
])

Therefore, hence the result, this proves.
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(4): Compute 𝑚
2
(𝑆1).

So, you have is unit circle and then we want to compute its Lebesgue measure in this. So,𝑆1

now, you take

𝑆1 =
𝑘=1

∞

⋂ ({(𝑥, 𝑦)|𝑥2 + 𝑦2 ≤ 1 + ε
𝑘
}\(𝑥, 𝑦)|𝑥2 + 𝑦2 ≤ 1 − ε

𝑘
})

( So, you take the unit circle and then you take a circle of slightly smaller radius and slightly

bigger radius and then you remove this and therefore the intersection of all these and



therefore, that is equal to now you have a set of decreasing sequences sets and then the

intersection is . )𝑆1

=
𝑘 ∞
lim
→

𝑚
2
({(𝑥, 𝑦)|𝑥2 + 𝑦2 ≤ 1 + ε

𝑘
}) − 𝑚

2
({(𝑥, 𝑦)|𝑥2 + 𝑦2 ≤ 1 − ε

𝑘
})

=
𝑘 ∞
lim
→

ω
2
(1 + ε

𝑘
) − ω

2
(1 − ε

𝑘
)) = 0.

where = unit ball. and we know of course, that is equal to 𝝅.ω
2

= 𝑚
2
(𝐵1),  𝐵1

This is in the assignment you will prove that if you are given the measure of the unit ball

then the measure of the ball of radius r is nothing but . So, this is what we have.ω
2
𝑟2
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(5): Let be a non-singular linear transformation. E contained in . Show that𝐴: ℝ𝑁 → ℝ𝑁 ℝ𝑁

,µ*(𝐴(𝐸)) = |𝑑𝑒𝑡𝐴| µ*(𝐸)

Then deduce that Lebesgue measurable if and only if is Lebesgue measure.𝐸 𝐴(𝐸)

( We did this only for Borel sets earlier and now we can use this thing to show this.)

Solution: and .𝐸 ⊂
𝑘=1

∞

⋃ 𝐼
𝑘

𝐼
𝑘
ϵ𝑃

So, .𝐴(𝐸) ⊂
𝑘=1

∞

⋃ µ*(𝐴(𝐼
𝑘
))

So, µ*(𝐴(𝐸)) ⊂
𝑘=1

∞

∑  µ*(𝐴(𝐼
𝑘
)) = |𝑑𝑒𝑡(𝐴)|

𝑘=1

∞

∑  µ*(𝐼
𝑘
).

So, if you take over all possible covers, you get

µ*(𝐴(𝐸)) ≤ |𝑑𝑒𝑡(𝐴)| 𝑖𝑛𝑓{
𝑘=1

∞

∑  µ*(𝐼
𝑘
)| 𝐸 ∪   

𝑘=1

∞

⋃ 𝐼
𝑘
,  𝐼

𝑘
ϵ𝑃}

= |𝑑𝑒𝑡(𝐴)|µ*(𝐸).

, .𝐸 = 𝐴−1(𝐴(𝐸)) µ*(𝐸) ≤ |𝑑𝑒𝑡(𝐴−1)|µ*(𝐴(𝐸))

= .⇒  µ*(𝐴(𝐸)) ≥|𝑑𝑒𝑡(𝐴−1)|−1µ*(𝐸) |𝑑𝑒𝑡(𝐴)|µ*(𝐸)



So now it is now straightforward for Lebesgue measurability.
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So, let us just take E Lebesgue measurable and E . So, let us take⊂ℝ𝑁

µ*(𝐹 ∩ 𝐴(𝐸)) + µ*(𝐹 ∩ 𝐴(𝐸)𝑐) = µ*(𝐴(𝐴−1(𝐹) ∩ 𝐸) + µ*(𝐴(𝐴−1(𝐹) ∩ 𝐸𝑐))

=| | [ ]𝑑𝑒𝑡(𝐴) µ*(𝐴−1(𝐹) ∩ 𝐸 + µ*(𝐴−1(𝐹) ∩ 𝐸𝑐)

=| |𝑑𝑒𝑡(𝐴) µ*(𝐴−1(𝐹)

=| | | |𝑑𝑒𝑡(𝐴) 𝑑𝑒𝑡(𝐴−1) µ*(𝐹)



is Lebesgue measurable.⇒ 𝐴(𝐸)

So, now, similarly apply for converse.𝐴−1
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(6). If you have two measures on a given -algebra , , we say that is absolutelyσ µ
1

µ
2

µ
1

continuous with respect to and you write this notationµ
2

µ
1

<< µ
2

if .µ
2
(𝐸 = 0) ⇒ µ

1
(𝐸) = 0

Let be a bijection such that and map Lebesgue measurable sets to𝐴: ℝ → ℝ 𝑇 𝑇−1

Lebesgue measurable sets define



µ (𝐸) = 𝑚
1
(𝑇(𝐸)).

Show that µ << 𝑚
1
.

Solution: to show𝑚
1
(𝐸) = 0

that is .µ
2
(𝐸) = 0 𝑚

1
(𝑇(𝐸)) = 0

If not , then we know that there exists F non measurable .𝑚
1
(𝑇(𝐸)) > 0 𝐹 ⊂ 𝑇(𝐸)

This implies but and Lebesgue measure is complete and therefore𝑇−1(𝐸) ⊂ 𝐸 𝑚
1
(𝐸) = 0

this implies measurable implies F has to be measurable and that is a contradiction and𝑇−1(𝐸)

therefore you have that and therefore you have absolute continuity.𝑚
1
(𝑇(𝐸)) = 0


