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We will now discuss a very important property of the Lebesgue measure, namely Translation

Invariance. So we will start with the important Lemma. So,

Lemma: Let be open sets in , homeomorphism. So, these areΩ 𝑎𝑛𝑑 Ω′ ℝ𝑁. 𝑇: Ω →  Ω′

homeomorphic open sets and is Borel that means, it belongs to Borel - algebra, if𝐸 ⊂ Ω σ

and only if is Borel so, Borel sets get mapped to Borel set and nothing else can get𝑇(𝐸)

mapped to Borel set.

Proof: we set . So, clearly and because𝑆 = {𝐸 ⊂ Ω :  𝑇(𝐸) 𝑖𝑠 𝑎 𝐵𝑜𝑟𝑒𝑙  𝑠𝑒𝑡} Ω ϕ ∈ 𝑆

which is open therefore, it is Borel empty set is Borel and therefore, there is no𝑇(Ω) =  Ω'

problem. Now, if 𝑇(𝐸𝑐) = 𝑇(𝐸)𝑐.

And also 𝑇(
𝑖=1

∞

⋃ 𝐸
𝑖
) =

𝑖=1

∞

⋃ 𝑇(𝐸
𝑖
)

and therefore, from these two facts it follows that is a algebra because this shows that is𝑆 σ

closed under countable unions and this shows that it is closed and the complementation and

therefore, is a algebra and now open sets get mapped to open sets because these are𝑆 σ



homeomorphism and therefore, contains all open sets implies contains all Borel sets. So,𝑆 𝑆

given any Borel set T is a Borel set. Now converse apply this argument to so, then𝑇−1

automatically the converse gets true.
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So, that proves this lemma.

So, now as a special case let us take and fixed and we takeΩ = Ω' = ℝ𝑁 𝑥
0

∈ ℝ𝑁

𝑇(𝑥) = 𝑥 + 𝑥
0

So it is just translation by and therefore, that is a homeomorphism. So,𝑥
0

Borel by Lemma if and only if is Borel𝐸 𝑇(𝐸)

. So, now, let be the Lebesgue measurable and let ,𝐸 𝐴 ⊂ ℝ𝑁

]we want to show the is also the Lebesgue measurable.𝑇(𝐸)

Now before that you take if I is half open box then is also a half open box and both𝐼 + 𝑥
0

have the same measure because the volume of the box does not change by translation. So,

from the definition how is the definition of

µ*(𝐸) = µ*(𝑇(𝐸)),    ∀  𝐸 ⊂ ℝ𝑁.

Now, if you take any as a Lebesgue measurable set and , then you have let us𝐸 𝐴 ⊂ ℝ𝑁

µ*(𝐴 ∩ 𝑇(𝐸)) +  µ*(𝐴 ∩ 𝑇(𝐸)𝑐) = µ*(𝑇(𝑇−1(𝐴) ∩ 𝐸)) +  µ*(𝑇(𝑇−1(𝐴) ∩ 𝐸 𝑐)),  



= µ*(𝑇−1(𝐴) ∩ 𝐸) +  µ*(𝑇−1(𝐴) ∩ 𝐸 𝑐),

= µ*(𝑇−1(𝐴)) = µ*(𝐴),

this is and are both homomorphism and we just saw they are justµ*𝑇−1(𝐴) 𝑇−1

translations and therefore, the same as . So, this implies that is Lebesgue µ*(𝐴) 𝑇(𝐸)

measurable, similarly, applied to inverse. So, then we have proved the following theorem.𝑇−1
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Theorem: fixed then𝑥
0

∈ ℝ𝑁 𝑇(𝑥) = 𝑥 + 𝑥
0
, 𝐸 ⊂ ℝ𝑁

is Lebesgue measurable if and only if is Lebesgue measurable and in this case𝑇(𝐸)

. So, this property is called translation invariance of the Lebesgue𝑚
𝑁

(𝐸) = 𝑚
𝑁

(𝑇(𝐸))

measure.

So, Borel measure is said to be translation invariant if the measure does not change under

the translation mapping.
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Definition: a Borel measure on we say that is translation invariant if for everyµ  ℝ𝑁 µ

Borel set , we have .𝐸 µ(𝑇(𝐸)) = µ(𝐸) ;         𝑇(𝑥) = 𝑥 + 𝑥
0

So, now, the Lebesgue measure is translation invariant what are the other properties we have

seen important properties Lebesgue measure is finite on compact sets Lebesgue measure is

outer regular, namely it is determined entirely it is the infimum of of , openµ µ*(𝑈) 𝐸 ⊂ 𝑈

set containing any set E.

So now it happens these properties completely characterize Lebesgue measure. Any other

measure which has the same properties will just be a constant multiple look Lebesgue

measure if you take a measure multiply it by a positive constant you get a new measure, but

essentially the measurable sets are the same and therefore, this so, we have the following

important theorem.

Theorem: Let be a Borel measure on such thatν ℝ𝑁

(i) ν(𝐾) < ∞,     ∀  𝐾⊂ ℝ𝑁   𝑐𝑜𝑚𝑝𝑎𝑐𝑡,

(ii) ν(𝐸) = 𝑖𝑛𝑓 ν(𝑉)    :    𝑉 ⊃ 𝐸,   𝑉 𝑖𝑠 𝑜𝑝𝑒𝑛{ } ,

(iii) is translation invariant.ν



Then there exists a constant such that .𝐶 > 0 ν(𝐸) = 𝐶𝑚
𝑁

(𝐸),    ∀ 𝐸 𝐵𝑜𝑟𝑒𝑙.

Proof:

you take n times So, what is          𝑄 = [0, 1) × [0, 1) ×  .  .  .  ×  [0, 1)

𝑚
𝑁

(𝑄) = 1.
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So, now, let now, we take this cube and subdivided it well by drawing lines parallel to𝑛 ≥ 2

the coordinate axis into cubes of size 2 power minus n. So, n bigger

than 2 then we can write can be written as the disjoint union of 2 power n small n boxes in𝑄

the collection described earlier.𝑔
𝑛

So, what is this ? It is the set of all cubes of size 1 by 2 power n and whose vertices were at𝑔
𝑛

the integral lattice points with this mesh of 1 by 2 and therefore, you can take the unique cube

and simply subdivide it into two each direction into 2 power n parts and therefore, you have 2

power n times n cubes each of them is of the same size and they are all.

So, so, let nu of equal to C which is strictly positive then nu is translation invariant implies𝑄

all sub cubes above have same measure. So, let us take one such sub cube then what do𝑄∼

you know that we know that



.2
𝑁

𝑛𝑄
∼

= ν(𝑄) = 𝐶𝑚
𝑁

(𝑄∼).       ∀𝑄∼ ∈  𝑔
𝑛
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But then we prove this lemma that every open set is a countable disjoint union of elements

from the union gn and therefore, if

open, is the countable disjoint union of half open boxes from union gn over n and𝑈 𝑈

that implies that you also have the

.ν(𝑈) = 𝐶𝑚
𝑁

(𝑈)

Then condition two implies because it is starting, but the infimum of all open sets gives you

the measure of saying here. And therefore, this condition 3 implies that



,ν(𝐸) = 𝐶𝑚
𝑁

(𝐸) ∀ 𝐸 𝐵𝑜𝑟𝑒𝑙

, so, this proves the theorem.
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So, finiteness on compact sets, translation invariance and outer regularity. So, this determine

completely the Lebesgue measure. So, let us apply this to very nice results theorem,

Theorem: a linear transformation then Borel𝐴: ℝ𝑁 → ℝ𝑁 𝐸

⇒   𝑚
𝑁

(𝐴(𝐸)) = |𝑑𝑒𝑡 𝐴| 𝑚
𝑁

(𝐸).

So, this is the meaning. So, if you have a linear transformation you have a matrix so, you

have a determinant and the meaning of the determinant is that if you apply the linear

transformation then given any Borel set the measure gets multiplied by the modulus of the

determinant. So, this is the geometric meaning of the determinant of a matrix.

Proof:

So, step 1 let us assume singular then is contained in a proper subspace of . Let𝐴 𝐴(ℝ𝑁) ℝ𝑁

me not write here Borel then Borel implies this. So, now if E is any Borel set in𝐴(𝐸) 𝐸 ℝ𝑁



then what is , is contained in a proper subspace implies is Lebesgue measurable𝐴(𝐸) 𝐴(𝐸) 𝐸

by the completeness and because it is in a proper subspace we know that the𝑚
𝑁

(𝐴(𝐸)) = 0

measure of a proper subspace and , etc we did this calculation always in a properℝ1 ℝ2

subspace and measure is 0. Therefore, implies star because .𝑚
𝑁

(𝐴(𝐸)) = 0

So in this case, Borel may be a Lebesgue measurable set. I am not saying it is a Borel

measurable set that is why I erased that portion.

Step 2, so, now we assume the is non singular. So then it becomes a homeomorphism𝐴

therefore, the Borel implies if and only if a Borel, 𝐸 𝐴(𝐸)

so Borel by Lemma if is Borel.𝐸 ⇔ 𝐴(𝐸)

And you define ν(𝐸) = 𝑚
𝑁

(𝐴(𝐸))

then is Borel measure. If is compact, continuous image of compact set is compact. Soν 𝐾

is compact implies𝐴(𝐾)

𝑚
𝑁

(𝐴(𝐾)) <+ ∞.

.

Then, if open, then and is also and vice versa.𝐸 ⊂ 𝑉 𝐴(𝐸) ⊂ 𝐴(𝑉) 𝐴(𝑉)
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Therefore, you have, let us compute



,𝑖𝑛𝑓 ν(𝑉)  :  𝑉 ⊃ 𝐸,  𝑉 𝑜𝑝𝑒𝑛 { } = 𝑖𝑛𝑓 𝑚
𝑁

(𝐴(𝑉))  :  𝑉 ⊃ 𝐸,  𝑉 𝑜𝑝𝑒𝑛 { }
= 𝑖𝑛𝑓 𝑚

𝑁
(𝑈)  :  𝑈 ⊃ 𝐴(𝐸),  𝑈 𝑜𝑝𝑒𝑛 { }

= 𝑚
𝑁

(𝐴(𝐸)) = ν(𝐸).

Therefore, condition two is also satisfied is the infimum of .ν(𝐸) ν

Finally, translation invariance. So, 𝑥
0

∈ ℝ𝑁

and let us take

ν(𝐸 + 𝑥
0
) = 𝑚

𝑁
(𝐴(𝐸) + 𝐴𝑥

0
) = 𝑚

𝑁
(𝐴(𝐸)) = ν(𝐸).

Therefore, is also translation invariant therefore, this implies by theorem, there exists aν

such that for every Borel.𝐶
𝐴

> 0 𝑚
𝑁

(𝐴(𝐸)) = ν(𝐸) = 𝐶
𝐴

𝑚
𝑁

(𝐸) 𝐸
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Step 3, so, if A and B nonsingular clearly

𝐶
𝐴𝐵

= 𝐶
𝐵𝐴

= 𝐶
𝐴

𝐶
𝐵

.

because the measure of AB of E is nothing but the CB times CA times measure of BE which

is CA into CB times measure of E and therefore, C of AB is same as CA times CB.

Step 4, let us take orthogonal so, if is orthogonal and you should take unit ball𝐴 𝐵 𝐸 =

this implies because and therefore, (Refer Slide Time: 23:43)𝐴(𝐸) = 𝐸 𝐶
𝐴

= 1 = |𝑑𝑒𝑡 𝐴|.



Step 5, let us take given by the diagonal matrix𝐴

𝐴 = 𝑑𝑖𝑎𝑔(λ
1
,  .  .  .  ,  λ

𝑁
);   λ

𝑖
> 0,   𝑖 ≤ 𝑖 ≤ 𝑁.

Then you take

𝐸 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑢𝑛𝑖𝑡 𝑐𝑢𝑏𝑒;    𝐸 =
𝑖=1

𝑁

∏ [0, 1];

 𝐴(𝐸) =
𝑖=1

𝑁

∏ [0, λ
𝑖
]

 ⇒ 𝑚
𝑁

(𝐴(𝐸)) =
𝑖=1

𝑁

∏ λ
𝑖

=  
𝑖=1

𝑁

∏ λ
𝑖( )𝑚

𝑁
(𝐸).

⇒ 𝐶
𝐴

=
𝑖=1

𝑁

∏ λ
𝑖

= 𝑑𝑒𝑡 𝐴

Step 6, so, any non singular matrix we have the polar decomposition can be,𝐴 𝐴 = 𝑅𝑄 𝑅

positive definite, orthogonal. This is same as any complex number can be written as mod Z𝑄

into or . Similarly, you take EA and you find𝑒𝑖θ 𝑒𝑖θ|𝑧|

𝑅 = 𝑃𝐷𝑃𝑇

such that or and then , the square root of this the so, this matrix you𝑅 𝑅 = 𝐴𝑇𝐴 𝐴𝑇 𝑅 𝑅

can find such like this because this positive definite matrix and therefore, you have and you

take .𝑄 = 𝑅−1𝐴

So, this is called a polar decomposition, it is the same as writing a complex number in terms



of its modulus and its argument. So, R itself is positive definite therefore, you can write this

as

𝑅 = 𝑃𝐷𝑃𝑇

orthogonal and then is the determinant of and that is nothing but the𝑃 𝐷 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑅

.|𝑑𝑒𝑡(𝐴). |
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And now, you have 𝐶
𝐴

= 𝐶
𝑝
𝐶

𝐷
𝐶

𝑃𝑇 = |𝑑𝑒𝑡(𝐴)|

and that proves this theorem. So, the determinant, this is the geometric meaning of the

determinant and we have using this fact that the Lebesgue measure being translation

invariant, regular and finite on compact sets determines the measure itself.


