Measure and Integration
Professor S Kesavan
Department of Mathematics
The Institute of Mathematical Sciences
Lecture No - 14

3.1 - Approximation
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So, we continue with the approximation results concerning the Lebesgue measure. So, we

have the following proposition.

.pe N . . .
Proposition: Let E € R be a measurable set of finite measure. Given € > 0, there exists a

compact set K < E such that mN(K\E) < e

proof: We will do it in a few steps.

step 1: Let n > 0. Then there exists V open, V > E and mN(V\E) < €. Let B(0,7) be the

open ball centered at 0 of radius r and B(0, r) equals closed ball center 0 and radius r.

So, n € N, and you write Vn = B(0,7) n V. Then Vn are all open, Vn T V. So, V has finite

measure why V as finite measure and you have that lim mN(Vn) = mN(V).
n-—> o

= 3am, mN(V\Vm) < n. Then E\Vm c V\Vm = mN(E\Vm) <7

and then we are taking limits but v is a bounded open set.
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Step 2: Ja closed set F C Vm so that mN(Vm\F ) < 1. So, now F is bounded and closed

(since Vm is bounded) = F is compact.

Step 3: Thus by steps 1 and 2, given € > 0, there exists a bounded open set W such that

mN(E \W) < % and there exists a compact set K . W such that mN(W\K 1) < % .
Finally, there exists F L closed s.t. F . C E and mN(E \F 1) < % . Set

K =K1 nF1=>KisclosedandK c E.

So,now

E\K = (E\W) U ((E n W)\F) U (W nF)\K) c (E\W) U (E\F) U (W\K)).
And therefore, mN(E\K) < % + % + % = €

So, the only thing you really have to check here is this particular set theoretic identity.
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So, let us let me draw a picture for you so, that so, you have here the set E and then what you
do, you found bounded open set W which was like this and then you took k1 which is a
compact set and a closed set and you took a set F1 so, F1 intersection k so, this is the compact
set, k which you finally got and this is a set E and therefore, if you want E minus k it consists
of actually three parts which is E minus W which is here. And then you have the E

intersection W minus F1 then W intersection F1 which is here minus k1.

So, if you add all that precisely E minus k. So, all the shaded new things which will give you

E minus k, so that you can check it yourself and then so, this proves that approximation

property.
Remark: So, you have E C R" measurable. Then on one hand you have

mN(E) = inf{mN(U): E c U, U open}.

So, m, is called outer regular if mN(E) < o0 and

mN(E) = sup{mN(K): K c E, K compact}.

In fact, the supremum relation you can also prove without this restriction on mN greater than
lesser than plus infinity, leave it as an exercise for you and therefore, this is called inner

regularity.
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So, any Borel measure that means a measure defined on all Borel sets so Lebesgue measure is
an example which is both inner and outer regular is called regular it is also all RADON,

RADON measure is a Borel measure which can be which is both inner and outer regular this

was the just a definition.
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Now, we move to approximation of functions involving measurable sets.

Definition: We have X (# ¢) any set, A ¢ X. Then we know



XA(x) =1, ifx €A,
= 0, if x ¢ A

Definition: O c R" an open set. A step function defined on Q is a function of the form

n
f=X an1 , where aj, 1 < j < n are constants and Ij, 1<j<n
j=1 j

are are boxes contained in ().

So, it is a function which is made up of boxes characteristic functions on boxes.

Proposition: I C R" box, € > 0 given. Then there exists ¢ € CC(]RN) s.t.0< ¢ < 1land

m ({x ER": o) #x,(0) < e

Further supp(¢) c I.
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proof: We can find boxes ]1, ]2 s.t. ]1 c ]2 c ]_2 c I and such that mN(I\jl) < e
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So, in two dimensions let me draw a picture here. So, this is a box I and then I make smaller

boxes | v Ji ) and then I, and then I make these boundaries sufficiently close so that they are all

the whole thing difference in the area is less than epsilon so that I can do.
Now if you use Urysohn's Lemma, there exists a continuous function ¢ continuous function

on R" such that 0 < o(x) <1Vx ¢ = 1on]1and¢ E]_ZC.



So, you have two disjoint open sets. So, J 1 is an open box.

Let me write that first J1 open box. So, I have these two disjoint So, J1 should be a closed
box because we are going to apply Urysohn’s Lemma and let us do it correctly. So, J 1 is a

closed box and J 2 is an open box.
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So, this is the J] 2 complement so, you have J 2 complement is a closed set J 1 is a closed set
and J1 intersection J2 complement is empty and J1, J2 complement or closed. Therefore, by

Urysohn’s Lemma I can construct such a function which is like this. So, this implies that



- - N
= supp($p) cJ,c L], cpt = ¢ € C(R"), supp(d) < I.
Now, what about the set {x: ¢(x) # Xl(x)} c 1\ 1and then mN(I\] 1) <e

So, that proves the theorem. So, it is just a simple application of Urysohn’s Lemma.
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Corollary: () c R" open set and f:Q — R a step function, € > 0. Then there exists
deCstm ({x € Q f(x) # d(x)}) < eand max |[dp(x)| < max |f(x)].
¢ N XEQ XEQ
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k
proof: So, let us take f = )’ ax, - Without loss of generality, let Ij are all disjoint.
i=1 7

So, there exists functions q;j € C (]RN), 0< q)j <1, supp(q)j) c I}, and
C

m, (X €R: /() #x(P < T

k

Now, define ¢ = )’ ajq)j. So
j=1

(re ¢ f@)eu_re @ *x® eu_xeR" ¢ @ #x )

= mN({x € QO d(x) # f(0)}) < e
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So, we have found a continuous function phi with these properties:

supp(d) c I, alldisjoint = max |p(x)| < max |a| = max |f(x)].
] J x€Q 1<j<k ~ J XEQ

Finally, ¢ has compact support because support cl)j is in Ij, Ij is a finite box. So, inside you
have a closed set which is closed, bounded therefore, it is compact and compact support

contained in szlklj cQ=>¢€ CC(Q).

So, that completes the proof of this step. So, we will continue afterwards.



