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Before we go further, I just want to make some corrections on what we did last time. The proof
was correct, but I made mistakes when writing it. And so, in case it confuses people, I apologize

for that. So, let me write everything correctly.



Proposition: The Borel o-algebra is also the o-algebra generated by the open sets in R.

proof: So, B1 = S(R) = Borel o-algebra. So, let T be the usual topology on R.
So we show B = S(0).

So, let a,b € R. Then the open interval (a, b) = [a, b)\{a} € B1 and any open set is the

countable union of open intervals and this implies therefore,

TC B1 = S(1) c Bl.
Conversely, you have [a, b) = (a, b) U {a}. Now
{@=n_%"(a-— a+) €S> [ab) € S
=>PcS(t)=>Rc S(t)=S(R) = B c S(0).

And therefore that proves the proposition.



