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Hello, welcome back to lecture 3 of the geometry of vision. In lecture 1, we raised a lot of

questions concerning the way in which we visually understand the world around us. In particular,

we talked about what changes and what stays the same when we shift from one perspective to

another. And some related questions that we asked are whether there are any measurable

quantities, any numerical quantities that stay the same when we shift between perspectives.

For example, different perspective views of a tiled floor. And another question we asked is

overall how do we characterize these maps? These perspective shifting maps from the plane to

the plane. And a final question that we asked is what is the perspective image of a square? What

are all the possible ways that a square can appear under a perspective shift? In lecture two, we

did not actually answer any of these questions, in fact we added a couple more.



We introduced the extended plane, the extended Euclidean plane and we saw that it has a

somewhat strange shape. And we also introduced a coincidence, known as Pappus’s theorem.

But we have not yet seen why Pappus's theorem holds. So, we have a lot of questions hanging

over our heads now.
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And today we will start to make some progress or rather this week we will start to make some

progress in answering some of them. So, what we want to do this week is precisely define

perspective shifting maps and identify something which is preserved under these maps. So, that

is our mission for this week, for lectures 3 and 4.
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And in lecture 3, we will begin by introducing another coincidence. So, Pappus's theorem is what

I am considering our first coincidence, that we have explored. Today I want to introduce a

second coincidence and it works in the following way. We can take any three points on a line l, in

other words any three collinear points A, B and C. For example, if we have a line here, we can

imagine three collinear points on it, A, B and C and we have the following construction.

And by the way, like Pappus’s theorem, this coincidence also involves a straight edge

construction and there is a lot of freedom in that construction. So, the surprising thing about the

theorem is that despite that freedom something unexpected always happens and it is always

guaranteed to happen. So, let us see exactly what that is by following this construction. So, the

construction works as follows. Maybe rather than draw it live, let us use the slides that I have

already prepared.
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So, we start with A, B and C as three collinear points. Now we choose any point P which is not

on the line l, this is the line l. So, choose any point P not on that line l. Now draw the line from P

to B and choose any point Q on PB. So, you can see, I have chosen my point Q here and it is

lying along this line PB. So, now we have made two choices. So far we have chosen P and we

have chosen Q along PB.

The next step is to draw some lines and define two more points R and S. So, what we want to do

is draw the lines connecting A and C to P and Q. So, in particular I want to draw all four of those

lines connecting A to P and Q, and connecting C to P and Q. So, I am connecting C to P and Q

and connecting A to B and Q. We have done that. Let R be the intersection of AP and CQ.

Similarly, let S be the intersection of AQ and CP. So, AQ and CP intersect here, so that is our

point S. So, we have now defined R and S, the next step in our construction is to let D be the

intersection of RS with l. In other words, draw this line RS, extend it till it hits l and let us define

that point here to be D. So, this is our construction. Now nothing surprising so far, the surprising

thing is that the location of D depends only on A, B and C.



It is independent of the two choices that we made. So, we could have picked P and Q to be

anywhere else and we still would have gotten the same point D. Now it is easier to see it than

maybe hear it. So, let us see it again. So, let us do the same construction again. Let us keep P the

same this time. There are two choices. So, let us keep P fixed and let us choose a different Q

lying along the line PB.
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So, I am keeping the same P and I am repeating the construction but I am choosing Q all the way

up here this time. And as before I am connecting C to Q and P and connecting A to Q and P. So, I

am drawing all these lines. Now let R be the intersection of AP and CQ and S be the intersection

of AQ and CP. So, R is the intersection of AP and CQ.

And finally let us draw the line RS and see where it hits l. It hit exactly the same place. I had left

that point from before just for comparison’s sake. Yes, it is going through the same point D, it is

in the same location. So, that is two experiments we have done and both times D has come out in

the same place. But the claim is, of course, that it comes out in the same place no matter. Let us

see a third demonstration and this time let us vary the location of the point P.

(Refer Slide Time: 07:26)



So, let us put P all the way over here and let us see what happens when we follow this instruction

set. So, we connect P to B and we choose Q somewhere along this line. I am choosing it right

here, but I could have chosen it anywhere else. And now we connect C to P and Q, we connect A

to P and Q, we get a kind of quadrilateral here. And now we define R and S to be these two other

corner points of the quadrilateral.

We connect up R and S to get this violet line here. And the claim is that the violet line will

intersect our line l in the same spot and indeed it does D is in the same spot once again.
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So, given that this D, this fourth point, keeps coming out in the same way, it makes sense to give

it a special name and indeed it has a special name, the harmonic conjugate or sometimes

projective harmonic conjugate, to distinguish it from other mathematical harmonic conjugates

that come up in other fields of mathematics. So, in this class, we will just call it the harmonic

conjugate and it is defined in the same way as we define D.

By the way D is the harmonic conjugate of B with respect to A and C. So, going back, D is the

harmonic conjugate of B, this point, with respect to A and C. So, another way to kind of visually

see that we are kind of saying that in this quadrilateral here C and A give us the sides of the

quadrilateral, B and D give us the diagonals.

We will talk more about that in a second. But as a definition, the harmonic conjugate of B with

respect to A and C is denoted by HAC(B). It is the intersection of RS with our original line l

containing A, B and C. So, we can rephrase our coincidence as the harmonic conjugate theorem.
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And that theorem states that given any three collinear points A, B and C, the harmonic conjugate

HAC(B) is well-defined here. What does it mean to say it is well defined? It means that the

construction of the harmonic conjugate does not depend on the choices of points P and Q. I can

choose them in any way I want and I will still get the same point. So, it is well defined.

(Refer Slide Time: 10:09)

How can we prove this theorem? Well, this collection of points and lines, this configuration here,

hopefully it looks a little bit familiar from the previous two lectures. In fact, it is a lot like the

perspective views of the tiled floor that we have been working with since the introduction video.



In particular this one looks a little bit like the third perspective view, but it looks like one of those

perspective views.

So, can we somehow interpret this configuration of points and lines as a perspective view of a

square tile? If so maybe then that might help us to prove this. So, let us say this is a square tile

here. Can we somehow interpret this as a perspective view of a square tile sitting somewhere in

space? We can interpret it that way, if this quadrilateral here is indeed a perspective image of a

square.

If there is actually a way to situate a square somewhere and take a photograph of it from some

angle in such a way that the square ends up looking like this. But is that possible? Is this

quadrilateral actually the perspective view of a square? We do not know yet that is one of the

questions that is hanging over our heads right now, which we need to prove or examine and kind

of find an answer to one way or another.

But as of now we do not know what the perspective image of a square looks like. So, we cannot

assert that, this is definitely the perspective view of a square tile. We can still interpret this tile as

the perspective image of a parallelogram and the reason is as follows. It is certainly a

quadrilateral; we can certainly interpret this as a perspective view of something.

And when we do that, if we make this our line at infinity, our horizon line, then this quadrilateral,

both of these opposite edges are converging to this point at infinity here, meaning, from a bird's

eye view they would appear parallel. And similarly, both of these opposite edges are converging

to a pointed infinity here. Again, meaning that from a bird's eye view these would be parallel. So,

it is a quadrilateral whose opposite edges are parallel to each other.

Otherwise, that is a parallelogram. So, we can interpret this as a perspective view of a

parallelogram. In that case, we can also examine that parallelogram, examine this construction,

this entire configuration from a bird's eye view, from a top-down view.
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So, when we do that here, it is from a top-down view. It looks like a parallelogram, here is P, Q,

R and S. I forgot to label R and S here. But you can just imagine this is R and this is S. I have

retained the colours. So, we are going to colour code our points at infinity. So, because we

cannot see the points in infinity from the top-down view. So, the different parallel classes,

equivalence classes of parallel lines, the different families of parallel lines are colour coded.

So, the blue ones are going in this direction, the red ones in this direction, the purple diagonal

here, and the green diagonal here. So, hopefully that is not too confusing. So, let us perform the

construction again with a different choice of P and Q and then let us see what is going on. Let us

put a new point P' here and connect it to B.

I am just following the instructions for the construction one more time. Next step is to choose a

Q' somewhere on this line. So, let us choose it here. Next step is to connect up C to Q' and P' and

also connect up A to Q' and P'. We get a new quadrilateral here. Next step is to draw the

diagonal, the other diagonal in violet. And according to the theorem this new diagonal ought to

intersect the point D here, the same point D.



So, that is what we are trying to prove. It is guaranteed to intersect the same point D and we want

to know why that is. So, let us examine that second construction from the bird's eye view. It will

give us another parallelogram. So, here is the quadrilateral from this view, from a bird's eye view.

What will this second tile look like? And it will give us another parallelogram. Not only another

parallelogram, for the same reason that the first one was a parallelogram, but this parallelogram

is intimately related to this parallelogram.

Because the red, these two, edges of the parallelogram are parallel to these two edges. They are

all converging to the same point at infinity A. Similarly, these blue edges are parallel to these

blue edges here on our original parallelogram. In the perspective view they are all converging to

this point at infinity C. The green diagonal of this new parallelogram is parallel to the green

diagonal of the first parallelogram.

And from the perspective view they are both converging to this point at infinity B. So, these

parallelograms are very related. This new one all of its corresponding edges seem to be parallel

to the corresponding edges of the original. But we have not said anything yet about this violet

diagonal here. So, in our new parallelogram, I had like to claim and assert that this violet

diagonal has to be parallel to the violet diagonal here in our original parallelogram.

If that is the case then equivalently in the perspective view this dotted violet line must intersect

D. So, going back to the bird's eye view the question I am asking, is R'S' parallel to RS?
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So, how can we see that indeed that is the case? Well, what do we know so far? We know that RP

is parallel to R'P'. We know that RQ is parallel to R'Q' and PQ is parallel to P'Q'. What we do not

know is that RS is parallel to R'S'. So, that is what we want to conclude. So, how do we do that

well? Let us define some vectors. Let us define a vector u equal to RP.

So, that is a vector here and let us define a vector v equal to RQ. So, here is our vector v, here is

our vector u. And in that case notice that u+v, if we add u and v, we get this diagonal vector. So,

this is u+v and similarly u-v is the vector going from the point Q to point P. So, we actually

capture all of the sides and diagonals through those vectors u and v.

Now we know that the triangle RQP is similar to the triangle R'Q'P' because all of their

corresponding sides are parallel to each other. So, they have to be similar triangles since their

corresponding sides are parallel. Since they are similar triangles, it follows that R'P' is equal to

cu for some scalar c. Anyway, we can say it is equal to cu, for some scalar c because it is parallel

to RP.

But since these triangles are similar that means that R'Q' is equal to cv for that same scalar c. So,

this vector here from R' to P' is cu and this vector here, from R' to Q' is cv. And from that it



follows that R'S' as a vector is equal to cu+cv. But we can just factor out the scalar c, so that is

c(u+v). And therefore, R'S' is parallel to RS. So, therefore the harmonic conjugate D or HAC(B) is

indeed well defined from what we have now seen from that top-down perspective.
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So, we have a well-defined quantity called the harmonic conjugate, given three points on a line

we can define a fourth point based on those three and it is known as the harmonic conjugate. Of

course, as we vary A B and C the harmonic conjugate will move around on that line. So, here are

some screenshots from GeoGebra. It is a free software. You can download it and try it yourself if

you want to try and create this construction and play around with it.

It is a very useful tool for exploring plane and geometry, projective geometry and Euclidean

geometry. So, let us just see a few screenshots. So, I have put A, B and C here and D came out

over here. But of course if I move P and Q around, D will stay the same. That is what we have

seen so far. So, D is a well-defined function of A, B and C. But what if we move A, B and C. So,

let me move B around and see how that affects the location of D.

So, if I move B to the right, D moves a little closer to C, they move together a little on the other

end. If I move B closer to A, D also moves closer. So, you can see how moving B around will



affect the location of D. But what happens if I evenly space A, B and C? So, if you space A, B

and C evenly along the line then we get a kind of special configuration.

And the point D is nowhere to be seen; it actually goes off to infinity in that case. And you can

see that because the horizontal line connecting R and S, that violet line which is supposed to

meet our original line at D. It is actually parallel to our original line containing A, B and C. So,

they will only meet at infinity in this case. So, in this situation, this configuration, the harmonic

conjugate of B with respect to A and C actually lies off at infinity, it is a point at infinity.

So, the point at infinity is P[l], remember l is our original line. So, the harmonic conjugate of B

will be the point at infinity P[l].
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So, in other words the harmonic conjugate is only well defined in E2, the extended Euclidean

plane, not in all situations in R2. So, let us revise our definition a little, keeping that in mind. So,

it is the exact same construction but I have just added an E2 here just to clarify that. We are

picking our points A, B and C to be three collinear points in E2. And in that case, we have a

well-defined harmonic conjugate. But now that we are in E2, is there anything else we have to

check?
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What if one of these points, for example, lies at infinity? For example, what if A or C lies at

infinity? Well that is something to think about. But very roughly we will still get a well-defined

harmonic conjugate and the harmonic conjugate in that case probably will not lie at infinity. But

if A or C lies in infinity our picture will look a little bit different. So, in our picture here if A or C

lies at infinity then we can still imagine this as a perspective view of a tiling.

But it will not be the exact same picture; it will be in one point perspective. So, imagine that P

lies at infinity and say this is the point C. So, A is a point at infinity, let us say P[l]. Then we will

end up getting a quadrilateral that looks something like this. For example, let us put our B here,

we picked our P here, our Q here, here is our R and here is our S and we will end up getting a

point D, a harmonic conjugate over here.

So, this would be the situation if A lies at infinity. So, this pair of opposite sides of our

quadrilateral would end up being parallel. So, this would resemble that one point perspective

view of this square tiled floor that we looked at back in the introduction.
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What if both A and C lie infinity? Well, in that case the entire line l is the line at infinity. It will

contain A, B and C. So, what the theorem says is that in that case we have already examined and

proved this case. This is the bird's eye view that we actually reduced all other cases to, in order to

prove the theorem. So, we have actually dealt with that already. So, indeed the harmonic

conjugate is well defined in E2.

And you can try and convince yourself by just going through the definition again, going through

the construction again and checking that there is nothing that we have left out. And there is

actually maybe a little hint there is something a bit sneaky I have done which you can see if you

can figure it out. There is a small hole in my proof that I have given so far. So, I will admit that

right now. See if you can figure it out, we will address it and patch it up in lecture four.

But for the time being I will pretend that everything I have done is fine. If you can find the gap in

my proof then good for you. If not, do not worry about it too much. I will come back and patch it

up tomorrow in the next lecture. But I want to leave that gap now because patching it up requires

something that we still need to build. If you are understanding what is going on so far, you are

still in good shape for what is coming next.
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So, now that we have seen that the harmonic conjugate is well defined. Let us look at some of its

properties. Why have we introduced this kind of strange construction and this fourth point? What

is it all about? So, to begin with the harmonic conjugate displays some very nice symmetries. So,

let us take a look at those.
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And the first one is very simple; it is just that HAC(B) equals HCA(B). So, what is that saying?

Remember, in our construction we actually do not distinguish between A and C. So, it makes

sense that there is a symmetry like this. And in our construction, remember, after picking our P



connecting it to B, picking our Q the next step was just to connect A and C to P and Q. Drawing

these four lines in any order does not matter.

So, in that way A and C are symmetric, there is nothing to distinguish them from each other. So,

it makes and from that point onwards R and S also, it does not matter which is R which is S. We

are just drawing a line connecting R and S and seeing where it intersects D. So, in this

construction the roles played by points A and C are perfectly symmetric. So, it makes sense that

this symmetry holds. So, that is our first symmetry, fairly simple.
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Our second symmetry is a little bit more interesting. Let D be defined to be the harmonic

conjugate of B with respect to A and C. Then B is the harmonic conjugate of D with respect to A

and C. I wrote that as CA I could have written it as A C. We have already seen that it does not

matter but it is a little confusing. But I am not talking about this symmetry, I am talking about

this, the symmetry that if D is equal to HAC(B), then B is equal to HAC(D).

So, let us just look at the diagrams for these two situations. So, if D is equal to the harmonic

conjugate of B with respect to A and C, we have a quadrilateral like this that kind of represents

this harmonic relationship. This diagram shows that if we can pick our P and our Q and get our



D. And in order to see the second relationship we needed a different diagram. But I argue that we

can actually alter this diagram a little bit to build our second one.

So, this relationship is saying that after picking P and Q we have drawn our quadrilateral and our

diagonals of our quadrilateral are actually hitting the line at B and D. So, what if we actually

want to draw a diagram that represents the second situation. The exact same diagram will work if

we just switch the labelling a little bit.

So, in particular I have just switched my labels a little. I am now starting with A, C and D and I

am starting my construction by picking my P here, connecting my P to D because D is what I am

taking the harmonic conjugate of. Now I am picking my Q somewhere along this line, I am

picking it right here. Now I have my line segment PQ, I am connecting A and C to P and Q.

Connecting A to P and Q, connecting C to P and Q, that gives me this quadrilateral here.

Now we already have one diagonal, let us look at the other diagonal RS of that quadrilateral.

And that diagonal if we extend it hits our line l at B. Why does it hit it at B? Because it is the

same diagonal that was green in our previous situation. Basically, we have created the same

quadrilateral here. We have just switched the two diagonals. Since we know that the harmonic

conjugate is well defined, we can pick our P and Q anywhere we want.

So, we can pick our P, where in the places that used to be R and S. Why do not we just pick those

to be P and Q? That will result in the same quadrilateral that we had earlier except with the

diagonals exchanged, showing that B is the harmonic conjugate of D with respect to A and C.

So, this is a way of seeing the second symmetry.
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So, not only can we switch A and C but somehow B and D are playing a symmetric role. So, it

will be useful to give another definition rather than just talk about harmonic conjugates. Let us

talk about something called a harmonic tetrad, tetrad just means four things. Harmonic tetrad is

an ordered set of four collinear points A, B, C and D such that D is the harmonic conjugate of B

with respect to A and C.

And in this case, we will introduce this notation H[A,C:B,D] to indicate that A, B, C and D form

a harmonic tetrad. So, this notation that is actually a statement when I write this, we can unpack

that as a statement saying A, B, C and D form a harmonic tetrad. So, this is not a quantity as

such, it is actually a statement.
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So, let us look at the symmetries of the harmonic tetrad rather than just the conjugate. So, using

the symmetries that we have already observed about the harmonic conjugate can be translated

into symmetries of the harmonic tetrad in this way. We have already seen that H[A,C:B,D] if and

only if H[C,A:B,D] In other words, we have already seen that A B C D where A and C are the

vanishing points of the sides of the quadrilateral and B and D are the vanishing points of the

diagonals of the quadrilateral.

We have seen that that is true if and only if we can basically switch A and C. So, this is also a

harmonic tetrad. Similarly, we can switch B and D that is what we saw in our second symmetry

and this is still a harmonic tetrad. Finally, this is also a harmonic tetrad, we can switch A and C,

we can also switch B and D.

So, basically when I write this notation, I am saying that this points A, B, C and D form are

harmonic tetrad in which the things on the left are the vanishing points of the sides of the

quadrilateral, the things on the right are the vanishing points of the diagonals of the quadrilateral.

That is really what this notation means. And you can freely permute the things on either side. But

that is what we have shown so far with our previous two symmetries.



But there is another symmetry which is a little bit more interesting which is that we can also

permute the set of sides with the set of diagonals, we can switch them. So, here A and C are the

vanishing points of the sides, B and D are the vanishing points of the diagonals. Over here B and

D are the vanishing points of the sides, and A and C are the vanishing points of the diagonals.

So, we have switched these. So, this one is more interesting and also a little bit harder to see.
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So, let us write this as a theorem the harmonic tetrad symmetry theorem. So, it is really coming

down to showing this because all of these equivalences we have already seen in our previous two

symmetries. So, we need to show this.
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So, this is a harmonic tetrad if and only if this is a harmonic tetrad. So, again H[A,C:B,D] is a

harmonic tetrad if and only if there exists a quadrilateral in E2 such that the opposite edges meet

at A and C. In other words, this edge and this edge are opposite edges which meet at C, this edge

and this edge are opposite edges which meet at A. So, the pairs of opposite edges meet at A and

C respectively and whose diagonals intersect the line AC at the points B and D.

So, that is a way of characterizing our harmonic tetrad. So, let us construct a quadrilateral in

which the pairs of opposite edges meet at B and D respectively and whose diagonals intersect

that line B D at A and C. So, I am just saying the exact same thing. Since this is a

characterization of a harmonic tetrad let us prove that this is a harmonic tetrad by constructing

the appropriate quadrilateral whose edge vanishing points are B and D and whose diagonal

vanishing points are A and C.

So, to do that we can actually do it as a straight edge construction. So, let us try and construct,

this is something you can actually do with a straightedge. Let us try and construct this associated

quadrilateral. So, the first step is to draw lines from A and C to this centre point here, the centre

point of the tile. Then that actually gives us four different points, midpoints of the sides of this

tile.



Connect these four points perfectly to pre existing vanishing points. In particular, these two

connect to D and these two connect to B.
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So, we have done it. We have created a new quadrilateral whose side vanishing points are B and

D and whose diagonal vanishing points are A and C. So, I will just show you the construction

again. We use that centre point to get these midpoints, connected up the midpoints and erased

everything else and that is all we had to do. So, why does this work? So, here you can imagine,

this is P and this is Q now. And it might be easier to understand why this worked by looking at a

bird's eye view again.
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So, here is the bird's eye view of a parallelogram associated with the original harmonic tetrad,

H[A,C:B,D]. Here is its parallelogram and let us define vectors u equal to RP and v equal to RQ.

So, u plus v is then equal to RS. Now like we did earlier, I am going to draw lines through the

centre point that are parallel to the edge vectors. So, that splits my parallelogram into four mini

parallelograms and it also bisects each of the sides.

Now I can connect up those new midpoints and get my new parallelogram. So, what am I doing?

Well, joining the midpoints of a parallelogram yields a new parallelogram whose diagonals are

now u and v. u and v were my side vectors. u was RP, this red one here, v was this blue RQ.

(Refer Slide Time: 40:18)



But in the new one those become diagonals and meanwhile, the sides of this new mini

parallelogram are (u+v)/2 and (u-v)/2. You can verify that. So, clearly all of the parallel relations

that we want to hold, I mean u and v are just the same as u and v. Clearly (u+v)/2 is parallel to

u+v.   (u-v)/2  is parallel to u-v. So. Now the sides are parallel to what were earlier the diagonals.
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So, in other words given any parallelogram, we can always construct a dual parallelogram whose

side directions and diagonal directions are interchanged with each with one another.
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And it follows that we get this symmetry of harmonic tetrads.
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So, we still have not really seen why we care about harmonic tetrads? There are many reasons

too. But for our purposes, there is one property that is going to be especially important.
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Which is that harmonic tetrads are preserved under perspective shifting maps. So, they are going

to be key to understanding what stays the same when we shift from one perspective to another.

Which is one of the big questions that we have been trying to answer.
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So, the problem is we still have not defined what a perspective shifting map is precisely. So,

before we can show that harmonic tetrads are preserved under changes in perspective, we have to

precisely define what we mean by a change or a shift in perspective. So, that is our next task and

that is what we are going to do in lecture four. So, stay tuned and see you then.


