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Hi, welcome back to the Geometry of Vision. This is lecture eight, the final lecture in

which we will talk about the real projective plane and its transformation group.

(Refer Slide Time: 00:22)

So there are two approaches to geometry and projective geometry in particular. So

from the work of Pappus, the mathematician whose theorem we proved, and who

actually discovered the cross ratio, or at least who wrote it down. In fact, it is quite

likely other mathematicians before him had also noticed and thought about the cross

ratio. But, we have explicit writing from him on it, from 340 CE.

And from the work of Pappus, up through the 19th century projective geometry was

studied without coordinates or equations, but rather with drawing, with straight edge

constructions, and with axioms. So we have seen quite a few straight edge

constructions at the beginning of the class. And most of what we have done so far

with the exception of the cross ratio can be done with a straight edge, can be explicitly

drawn.



For example, a projectivity taking three points to three other points can be explicitly

drawn with a pencil and straight edge. So using straight edge constructions and basic

axioms, how many different people who were exploring these questions got a handle

on projective geometry and geometry in general. That was kind of the overall frame

of thought.

In 1637, Descartes published La Geometrie in which he gave birth to Cartesian

coordinates in some sense and analytic geometry, which is a totally different way of

approaching geometry, using explicit coordinates, numerical coordinates, which

allowed for exploring geometric objects through equations. But actually, projective

geometry was not so easily framed in a coordinate system like that, because distances

are constantly changing when you are considering a single object.

We might be considering an object in projective geometry, but we look at it from one

way or another and all the distances and angles and areas are shifting. They do not

stay the same, even though we are still looking at the same object. So we cannot

easily assign coordinates in a meaningful way.

So for that reason, maybe not just that reason, but mathematicians preferred the

synthetic approach, when it came to projective geometry. So they preferred this

approach of axioms and straightedge drawing over the analytic coordinate equation

approach of Descartes. So that kind of remained the dominant mode of investigation

for projective geometry through the 19th century.

But there is a remarkable new framework that came into being towards the end of the

19th century through the work of many mathematicians, including Mobius, Plucker,

and Grassmann, just to name a few.
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So we are going to explore that framework, which allows us to bring the analytic

approach to projective geometry. And in order to do this, we are going to introduce

the real projective plane and define homogeneous coordinates, which is a coordinate

system, which allows us to talk about objects in projective geometry, independent of

distance in a way.

And finally, we will investigate the matrix group PGL(3,R), which governs the

transformations of the real projective plane. So we will assume some familiarity with

basic linear algebra, in order to do this. So for those of you who do not have some

basic linear algebra, it is okay. Still listen to the lecture and the homework will not be

that heavy on linear algebra.

So, here and there, we might use a few terms that you are not so familiar with. But

hopefully you can think of that as a teaser for linear algebra itself and why it might be

nice to take a course on that. And more than linear algebra, we are really just going to

use vector calculus, which hopefully you have seen a little bit of in high school when

you studied calculus.
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Our setting so far, for projective geometry, has been the extended Euclidean plane E2.

And E2 is a linear space remember. What is a linear space? It is a set of points, a set of

lines, and a set of incidents relations between the points in the lines which satisfy two

very simple axioms, namely, any two points should be incident with exactly one line.

In other words, any two points should determine a unique line.

And the second axiom is that every line should contain at least two points. We should

not have lines that are empty sets, devoid of points, and we should not have lines that

have just a single point, then they are kind of meaningless. So every line should be

incident to at least two points. And the major thing is just that any two points

determine a unique line. That is what makes the space a linear space.

So the set of points in E2, what is it? Well, it is just equal to the set of points in R2

along with these extra points at infinity that we added. The notation we used was P[l],

what is this funny [l]? It is the equivalence class of all lines parallel to a given line l; l

is some line in R2. This is the set of all lines parallel to l. And we defined a point at

infinity corresponding to that equivalence class.

We defined E2 to have a set of points consisting of R2 along with all these points at

infinity. That is how we defined E2 to begin with. So it is defined very abstractly that

way. It is just all the points of R2 plus all these abstract points at infinity. And they



turn out to be kind of hard to visualize. Because, first of all, does E2 look the same at

any point?

If you remember, we saw that, from the properties of points and lines, from the

incidence relations, they were kind of the same at every point. It was the case, not

only was it a linear space, but we had an additional property that any two lines

determine a unique point. Any two lines are incident to a unique point. And that

property is the same.

That is true, whether you are taking ordinary lines or lines of infinity. Similarly, any

two distinct points are incident with exactly one line. That is true for any two points.

It does not matter if they are ordinary points or points at infinity. But it is still hard to

see why that is the case, because it is defined so abstractly. Why does E2 look the

same at every point? Actually, we do have a distinction.

We have these ordinary points of R2 where we have these abstract points sitting off at

infinity that we defined abstractly. So E2 is a little tricky to visualize. Another

problematic point that we encountered, problematic issue we encountered is that, for a

given family of parallel lines, we introduced one vanishing point. So it is the same

vanishing point in one direction and the same vanishing point in the other direction.

And we had to do it that way for it to be a linear space. But that had the strange

consequence, that if you go off in this direction, that is the same as going off in that

direction, infinitely far. Meaning that some of the lines connect up with each other at a

pointed infinity. Meaning the lines are kind of circular in a way. And what does that,

what do I mean by that? Are the lines really circular?

Can we think of them as circles? Or what is the deal with that? How do we visualize

lines in E2? And there is a third confusing thing here, which is a little more vague, but

just what is the overall shape of E2? How does it all stitch together? We have all these

individual lines that are connecting up like circles, how do they all stitch together?

How do we imagine E2 as a whole?



So these are questions that are hard to answer if we are just thinking of E2 abstractly

as this extension of the Euclidean plane by these points at infinity. And this line at

infinity connects the points at infinity.

(Refer Slide Time: 08:52)

So I want to answer these questions now by introducing a new avatar of the projective

plane known as the real projective plane, RP2. So it is really the same thing as E2, but

through a new lens in a way. It is also a linear space. RP2 is also a linear space, but it

has much more structure. For one thing, there is a natural way of thinking about its

shape, its topology, and seeing it as a manifold.

And do not worry, if you do not know these terms. For people who do know these

terms, RP2 is a prime example of a topological manifold. And we can very clearly

think about its shape and answer those questions.

(Refer Slide Time: 09:32)



So let us first give some inspiration and motivation for where RP2 was going to come

from. So all this time, what are our primary objects of study in projective geometry?

(Refer Slide Time: 09:45)

Well, remember that we have been looking at lots of points in planes under

perspectivities. But does it really make sense to think of points as the primary objects?

Or maybe it makes sense to think of sight lines through a fixed center point as the

primary objects. And the reason for that is that we have seen how, if we are just

looking at this plane 𝜋, let us say, we have a bunch of points on it.

And we can imagine seeing those points. In fact, the sight lines which see those

points, and taking those points to this plane, 𝜋’, that was that perspectivity that we



defined. However, we run into problems with the points at infinity. 𝜋 has a whole

bunch of points at infinity, one for every family of parallel lines. And we cannot see

those, but those also correspond to sight lines through the center point.

So for example, this was a point at infinity. In fact, if we keep looking further and

further and further and further along, our sight lines eventually converge to this sight

line here, which is no longer a point on the plane. But it is an abstract point at infinity.

So maybe we should be thinking about the sight lines, rather than the points on the

plane. So maybe we should think about sight lines through a fixed central point.

(Refer Slide Time: 11:21)

And as I just said, in any plane, 𝜋 or 𝜋’, it does not matter which plane we pick, there

is always going to be some ordinary points that we can see and some points in infinity

that we cannot. For example, with 𝜋’ here, we have points in infinity, corresponding

to lines like this. Of course, we have other points, ordinary points that are also

corresponding to sight lines, lines through this point.

But then we also have this point at infinity, these many points at infinity that do not.

So maybe, these sight lines, these lines through the center point are the things to

consider. Everything and everything corresponds to one of them. So let us try and use

sight lines as our primary object and remove this apparent distinction between



ordinary points and ideal points. Points should just be points and their geometry

should be kind of the same.
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So let us define the real projective plane. So let RP2 denote the set of all lines through

the origin in R3. So, the center of my sight lines is going to be the origin. And instead

of sight lines, I am just going to call them lines. Let RP2 denote the set of all lines

through the origin in R3.

So here are just a few of them. But of course, we have many more lines through the

origin in R3. Let us define a projective point to be a line through the origin in R3. In

other words an element of RP2. So this is a projective point here. This is a projective

point here. This is a projective point here. I have drawn three projective points, right

here. So it is a little confusing, but we will get used to it.

A projective point is a line through the origin in R3. And expanding on that, let us

define a projective line to be a plane through the origin in R3. So here I have drawn a

projective line, which is the plane. I have drawn a plane that connects this projective

point and this projective point, and that gives us a projective line. And it keeps going

and going. I have just kind of cut it off here so we can visualize it.



But this is a projective line. It is just a plane through the origin in R3. Now here is a

question for you. Do the following statements hold? The first statement is any two

distinct projective points are incident with exactly one projective line. Any two

projective points, in other words, any two lines through the origin are incident with

exactly one projective line, meaning a plane through the origin.

Are any two lines through the origin incident with exactly one plane through the

origin? Yes, they are. Any two lines at the origin will determine a unique plane

through the origin. So yes, this holds. The second statement is that any two distinct

projective lines are incident with exactly one projective point. So is that true?

Is it true that any two projective lines, any two planes through the origin are incident

with exactly one line through the origin? Well, any two planes intersect in a line. And

if these are both planes through the origin, they are going to intersect in a line through

the origin. So again, yes. Any two distinct projective lines will determine exactly one

projective point, exactly one line through the origin.

So both these statements are true. So both these are kind of the most fundamental

axioms in a way of a projective plane. And these both hold, which means that since

these properties hold RP2 is a model of a projective plane. That is how that is the term

some people use, meaning that it satisfies these two properties. Just like E2, E2 also

satisfies these two properties.

So like E2, RP2 is a model of a projective plane. It has this kind of nice duality of

points and lines. And in RP2, has a slight advantage, which is that it is readily

apparent that any point is geometrically similar to any other point. We do not have

this apparent distinction between points at infinity and ordinary points. So in that, for

that reason, RP2 was said to be a homogeneous space, homogeneous means same

everywhere.

The geometry at this point is the same as the geometry at this point. There are no

special points in that sense. So this is just the definition of RP2. And we have seen that



it is a projective plane and satisfies these basic properties, incidence properties of

points and lines.
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Okay, it will be nice to have an easy way to refer to lines through the origin. Now that

we are in R3 which has coordinates, can we find a way to refer to lines to the origin

using coordinates? Well, we have coordinate vectors. So you know we can always

choose a vector v lying on the line l, v= (v1, v2, v3) where these are all real numbers;

v1, v2 and v3 are three real numbers.

And for any nonzero vector v and any nonzero scalar 𝝀, notice that v and 𝝀v lie on the

same line l through the origin. So v lies on this line l, any scalar multiple of v will also

lie on the line l, for example, 3v will also lie on l. Or -v will also lie on l. And any

scalar by any nonzero real number will continue to lie on l. Actually, even the scalar

by 0 will lie on l, but it gets confusing if we do that.

So I would not explicitly use that one. So all of these scalar multiples of v lie on l.
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And I want to make a quick definition here. Given two vectors, (v1, v2, v3), and (w1,

w2, w3), let us write v∼w, if they are related by a nonzero scalar, i.e., v1, v2, v3 are a

scalar multiple of w1, w2, w3. And it is easy to check that this gives an equivalence

relation on the elements of R3-{0}. Basically, any two vectors are equated. They are

related if they are scalar multiples of one another.

So all of the vectors along this line l will be related to one another, under this relation.

So let us denote the equivalence class of (v1, v2, v3) by [v1:v2:v3]. This is a useful

notation. And the colons just emphasize that, we are now looking at ratios in a way.
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So each equivalence class now corresponds to a line. All the vectors along a line l,

like v and w here and all their scalar multiples will be related to each other under this

equivalence relation. So they will be equated with each other. And l corresponds to

their equivalence class, which we can write as [v1:v2:v3] or we could equally well

write it as [w1:w2:w3]. These mean the exact same thing and they both refer to that line

l.

So this is our handy notation for referring to lines through the origin. And these are

known as homogeneous coordinates.

(Refer Slide Time: 19:46)

Why do we want homogeneous coordinates? Well, first of all, obviously it gives an

easy way to represent projective points by vectors. But we can also represent

projective lines by vectors. So a projective line, which is a plane through the origin

can also be represented by a vector. In particular, it can be represented by the normal

vector to it.

So if you have a normal vector to this projective line, we can think of that as referring

to that plane through the origin, that projective line. And in fact, that is well defined,

because any scalar multiple of this normal vector will continue to be normal to this

plane here. So any scalar multiple of it in any direction, in both directions, is going to

keep being normal to that plane.



So that entire equivalence class of that normal vector, we can associate with that

plane. So homogeneous coordinates not only give us projective points, but

interestingly, they also give us projective lines, which is kind of cool. So some

exercises to see how useful they are. The first one I want you to look at is to show that

three projective points v, w, and u, remember these are projective points, so there are

lines through the origin.

So we could think of them as being written in homogeneous coordinates like this. v is

[v1:v2:v3], w is [w1:w2:w3], and u is [u1:u2:u3]. So can you show that three projective

points, v, w, and u are collinear if and only if the determinant of the three by three

matrix that they form is zero. We take them as column vectors. So what is this matrix

here? I am just writing, the order does not actually matter.

Let me write it this way, u, v, w. In fact, I could also equally write it as row vectors, it

does not really matter. You could take any three representatives for these points, and

create a matrix of them and check its determinant. And the claim is that these three

projective points will be collinear if and only if the determinant of this three by three

matrix is 0.

So that is a nice exercise. And as a hint, remember that a matrix has determinant 0, if

and only if the column vectors are linearly dependent. The column vectors are linearly

independent if and only if the determinant is nonzero. It is another way of saying that.

So what does it mean for three projective points to be collinear? Well, projective

points are lines through the origin. If they are collinear, if three lines through the

origin are collinear, they must lie on the same projective line. They must lie on the

same plane through the origin. So this picture here, we have one projective point here,

another projective point here.

And maybe if we take this projective point, that is another projective point, which is

collinear with the other two, because it lies on the same plane through the origin.



Maybe if this is v and this is vector w, this could be vector u. So this is a picture of u,

v and w being collinear. They all lie in the same plane through the origin.

So maybe you can see how to do the first exercise. They are collinear if and only if

their determinant is 0. So I will let you finish that exercise. But that is but do try and

try it out and work that out yourself. Okay, so the second exercise to look at is that the

join of two points is generally defined to be the unique line that they are coincident

with. So this is true in RP2 or in general just points in the plane.

Given two points in the plane, P and Q we see that their join is the line that they

determine, the line that joins them. The join of two points is defined to be the unique

line that they coincide with. So this line here l in this picture is the join of P and Q.

And can you show that the join of two projective points is given by their cross

product, or what I mean really is the cross product of any two vectors representing

those two points. So given two projective points l and m. Let us say that, here is one

projective point l and here is another projective point m and maybe we have some

vector representations for these.

So maybe l = [v1:v2:v3] and m = [w1:w2:w3]. This exercise is to show that the join of

these two projective points, which is defined to be the unique projective line

containing them, which we can see here is that it is this plane through the origin, that

is equal to the cross product of any two vector representations, any two vectors

representing these lines.

So the cross product of v with w. So can you show that that is true? And there is not

that much to do more than what I have just said. It is just the cross product of v and w,

we know is a vector that is orthogonal, that is normal to the plane spanned by v and w.

If you have studied the cross product, you will know that which is normal to this

plane here.



So it represents that projective line. If we think of a projective line as represented by

its normal vector, it gives us that. So I let you think about this last one, which is very

cool, because we can similarly define a dual motion of the meet between two lines. So

given two lines in a projective setting, they determine a unique point. And we call that

point their meet, the place where they meet is, it is a meeting place.

So any two lines have a meet, a unique meet. And the claim is that the meet of two

projective lines is again given by their cross product. So take two projective lines,

there are planes through the origin. They are represented by their normal vectors. And

the claim is that, if we take the cross product of those normal vectors, we will get a

vector representing their meet, representing the projective point that is their meet.

So I will let you think about that one. But there is an incredible amount of duality

going on here in how we represent these.

(Refer Slide Time: 27:48)

And this framework here is due to Grassmann who was a mathematician in the 19th

century. So now how do we visualize RP2? When projective points look like lines, we

have just seen in this discussion here, it gets a bit confusing, because projective points

are actually lines through the origin and projective lines are actually planes through

the origin.



So it gets a bit cumbersome to talk about and to keep going back and forth, especially

when you are first exposed to that. So you are totally forgiven if you are finding this a

bit confusing at first, because it is confusing to keep talking about projective points

being lines through the origin and projective lines being planes through the origin.

So the question is, how do we visualize RP2, this real projective plane, when

projective points look like lines and projective lines look like planes? Well, here is a

way, there is a nice way to do it, which is to define a rational map. I will call it 𝜙z,

from RP2 to plane z=1 in R3.

The way I will define this map is that I will have it send any element of RP2 to its

point of intersection with the plane z=1. Remember, an element of RP2 is a line

through the origin. And it is going to intersect that plane z=1 in a unique point to that

plane. So this map simply sends an element of RP2, a line through the origin to its

intersection with that plane, z=1.

And you can see it illustrated right here. So here is the plane z=1. And you can see

that this projective point, this line through the origin, gets mapped to this point here.

This one gets mapped to this point here, and this one gets mapped to this point here.

So we can actually write out in homogeneous coordinates exactly what this map is

doing.

It is taking an element of RP2. Maybe this element here is [x:y:z]. And it is sending

that to this point here, which in this case is the point (x/z, y/z, 1), right? This z

coordinate is 1, because it is in the plane z=1. And clearly, if you know these

homogeneous coordinates, we can scale by any scalar, and get a different vector along

this line. So what we are doing here is we are just scaling this by 1/z.

So this is equal to [x/z:y/z:1]. That is the same, that represents the same, that is just

another vector along the same line, maybe if we call this line l, it is given by this

vector and this vector also lies on it. And this vector has the advantage that it ends on



the z=1 plane. So we are basically just going to a particular vector representative of

this class.

And the particular representative we are going to is the one where z=1. And we get

there by scaling all the coordinates by 1 over z. So this gives a map which sends an

element of RP2 to the plane z=1. And I mentioned this is a rational map, because it is

not defined everywhere. Not every element of RP2 can be plugged into this function to

get a point on z=1.

Can you see a point of RP2 that does not go to a well-defined point on the plane z =1.

Remember, we are taking a line through the origin to its intersection with z=1. Well,

which lines through the origin do not intersect, fail to intersect z=1? How about the x

axis, or the y axis, or any other points on the xy plane. So we have some places where

it is not defined, that is why it is a rational map.

Now this map is called an affine chart. That is the technical term for it. And under this

map, we see that projective points look like points. All these lines through the origin,

which are my projective points, actually look like points under this map. And

projective lines look like lines. If you imagine a plane through the origin, it will

actually look like the plane that we saw earlier, which connects these two lines, it is

going to look like a line.

So a plane through the origin will intersect z=1 in a nice line. So in that way, it is a

very nice way to visualize RP2.
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But like I said, it does not capture all of the projective lines, the plane z=0 is missing,

the xy plane. One projective line I should say, is missing. And notice that under this

affine chart 𝜙z, which sends RP2 to the plane z=1, actually it feels a lot like E2. It feels

a lot like an extended Euclidean plane.

Because now all of our points look like points, all of our lines look like lines, except

we have these points on the plane z=0. And those ones, let us say this point here, or

like this line through the origin here, that actually is similar to a point at infinity. It

does not appear on this plane z=1. But we can imagine it. It is kind of a limit. So we

can imagine, maybe going further and further out.

This way, maybe you are going further and further and further out along the plane.

And as you do that, maybe you are moving from this line towards this line. And as

you do that, you are looking further and further and further out along the plane, like

we have seen before, in perspective drawing. And finally, in the limiting sight line in a

way you get to here, but that does not appear on your plane.

So these lines on the xy plane are kind of like points at infinity for E2. And the xy

plane itself, this plane z=0, is a projective line. And it is kind of, it corresponds to a

line at infinity for our extended Euclidean plane. So if we try and understand RP2



from this affine chart alone, it is a lot like staring at R2 and imagining abstract points

at infinity, one for each family of parallel lines.

And maybe you can convince yourself that just as we have seen before, in this setup

as well, if we follow any two parallel lines along, they will actually converge to a

single point at infinity. They will converge to a single projective point which is lying

on this plane z=0.

So the nice thing, however, is that since we are looking at the full RP2, and we are

looking at all of these lines through the origin, the abstract points at infinity, can now

be visualized easily as lines through the origin just like all the others. So all of our

points are lines through the origin. And the points at infinity are lines through the

origin in the xy plane. They are just lines through the origin that happened to sit in the

xy plane.


