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Lecture – 11
Proving Pappus's Theorem

Hi, welcome back to the geometry of vision. This is Lecture 6 in which we are going to

investigate the fundamental theorem of projective geometry.

(Refer Slide Time: 00:25)

In the last class we introduced something called the three fixed points theorem which said

that if a projectivity from a line L to itself fixes three distinct points then it has to be identity

map on all of L. And in today’s class, we are not going to prove the theorem yet, but we are

going to see three extremely important applications of just how fundamental this theorem is

for projective geometry.
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So, the first application, which is certainly not the least important, is the fundamental theorem

of projective geometry in one dimension. When I say one dimension, I mean we are looking

at projectivities from lines to lines. So, in this setting of projectivities from lines to lines, we

have the following statements. Given two lines  L and l in the extended Euclidean space E3.

And given distinct points A, B and C on L and a, b and c on l, there exists a unique

projectivity from L to l which takes A to a, B to b and C to c. So, I want to emphasize here

something really important, when I say projectivity I am referring to the map from  L to l.

I am not referring to a particular sequence of perspectivities that we are using to construct our

projectivity. There might be many, many different sequences of different perspectivities that

take A to a, B to b and C to c. In other words what this theorem says is that they are going to

be identical as maps from L to l. So; even though I might have very different constructions of

this projectivity over here and this projectivity over here.

This one is constructed by one set of perspectivities, this is constructed from a completely

different set of perspectivities. If they agree on these points A, B and C, then they have to

agree everywhere and then have to be identical as maps from L to l. So that is an important

thing to keep in mind: the theorem is not claiming that there is a unique sequence of

perspectivities. It is just saying, there is a unique map built up from perspectivities.
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So, how do we prove this? Well, the proof is actually kind of simple, given if we assume the

three fixed point theorem. Because, first of all we have already seen a construction. So, we

already know the existence, we just have to prove the uniqueness. So, we have already seen

how to construct this projectivity 𝚪 from L to l. So, just to refresh your memory, if we have

A, B and C here and we have a, b and c here, remember the construction I am talking about

was that we linked up C and a with another intermediate line m and then we did a

perspectivity from L to m and another perspectivity from m to l. So, the way I have drawn it

here it is going to look a little bit different, but basically this is O1.

And you can imagine, you are sending A to a, you are fixing C and you are sending B to

some point here on m. Now we can take a second perspectivity that takes this point to b, C to

c and fixes a. It is centered over here O2 where these lines intersect. That is my construction

that I am talking about. That is just one construction, there are other constructions as well.

This is the construction we already saw in the last lecture, so existence is not a problem. We

know that we can construct a projectivity taking three points to three other points. The thing

we have not proved yet is uniqueness. So, how do we prove uniqueness? Well, suppose there

is another  𝚪’ from L to l which is also a projectivity taking A, B and C to a, b and c.

So; just agreeing with 𝚪 on those three points. Well in that case let us look at this

composition in which we do 𝚪’ followed by 𝚪-1. That is going to be a projectivity from the



line L to itself which fixes A, B and C. So, by the three fixed point theorem it is the identity.

Since 𝚪 forms a bijection, it follows that 𝚪 is equal to 𝚪’; they have to be identical because

one followed by the inverse of the other gives us the identity.

So, that does it. So the uniqueness actually follows directly from the three fixed point

theorem.

(Refer Slide Time: 06:41)

A second application I want to do of the three fixed points theorem is Pappus’s theorem. So,

let us use the fundamental theorem of projective geometry, which we just proved, to finally

prove Pappus’s theorem. But for that to work, first we are going to introduce a certain lemma.
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So, let us suppose lines L and l are coplanar, so they intersect somewhere and let us look at

another construction that sends A, B, C to a, b and c. So, I am going to do a different

construction than the one that I just refreshed our memory right here.

(Refer Slide Time: 07:25)

Let us see a new construction like I said there are many constructions that do this. I am going

to show another one, but it is one that is quite special. So, I am phrasing it in terms of a

lemma which is sometimes called the criss-cross lemma and you will see why. So, this

construction is actually three separate constructions which is why the notations are a little

weird because there are three constructions corresponding to whether we choose x to be equal

to A, B or C.

Basically we have to choose A, B or C to be the center of the projectivity that I am going to

construct. The criss-cross projectivity that I am going to construct now, it need a center and at

center I can choose it to be A, B or C. Depending on which one I choose I will get a different

criss-cross construction. So, there are really three constructions that I am going to describe

now and maybe rather than have this weird general notation with x let us do it for B and

everything here is fully symmetric.

So rather than B, I could have picked A, I could have picked C to get a criss-cross

construction centered at A or criss-cross construction centered at C. So, there are three

different criss-cross of construction you are getting for the place of one. Let us see how it



works with the one centered at B. Remember there is a construction, there is a projectivity

that takes  A, B and C to  a,  b and c on the  l. But how does it work?

Well, the first step is to select two cross joints that involve point B, since we are choosing B

as our center. Well there are two cross joints that involve B. By the way, what I mean by cross

joint is the intersection of aB and Ab that is one cross joint and the second cross joint

involving B is the intersection of bC and Bc, which is right here.

So, those are the two cross joints involving the point B. The third cross joint which I did not

pick is Ac intersect aC which does not involve B. By the way we have our two cross joints,

let us connect them with a line and let us call that line mB. Now let us construct our

projectivity, it is going to be a sequence of two perspectivities. The first perspectivity from L

to mB , is centered at b.

So, it is a perspectivity centered at b from L to mB. Where is it taking A, B and C? Well, it is

taking A to here. It is pulling them down to taking A, B and C to these three points here. That

is what the perspectivity centered at b is, if we then follow with a perspectivity centered at B

going from the line mB to the line  l.

Well you can see that it is pushing them down to a, b and c. So, taken together this

composition is sending A, B and C to a, b and c. If you want to see it again, the first

perspectivity is centered at  b so we end up taking  A,  B and  C to these three points.

The second perspectivity centered at B, pushing these points out down to a, b and c. So,

basically A travels on a path like this to get to a, B travels on a path like this to get a b, C

travels on a path like this to get a  c and it accomplishes what we wanted.

So maybe from the picture you can see why it is called a criss-cross construction and you can

also probably imagine how it would be if we have picked A or C as our center? If you cannot

imagine it, picture it very well. That is fine. We are going to see it now because now we are

going to use the lemma twice and those times are centered at A and C. So we will actually get

to see all three constructions.
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Let us recall Pappus’s theorem and let us prove it. So, what does Pappus’s theorem say? It

says that given a set of a collinear points A, B and C and another set of collinear points a, b

and c the cross joints Ab intersect aB, Ac intersect aC and Bc intersect bC are collinear and

they lie on the Pappus’s line. Pappus’s line is defined to be the line containing them.

So these three cross joints are collinear and we will call the line that they all lie on, the line

that they all share, we will call that as the Pappus’s line. So, that is Pappus’s theorem. How do

we prove it? We will show that we get the same intermediate line in any two criss-cross

constructions, any two criss-cross projectivities from  L to  l.
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So, let us start with the criss-cross projectivity centered at A. So let us let mA be the line

connecting the cross joints Ab intersect aB and Ac intersect aC. So, we have mA as the line

connecting this.
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Now how does the criss-cross construction work? We compose the perspectivities Fa from L

to mA and FA from mA to l. So, when we do that we first look at Fa from L to mA. It is centered

at a. So it is pulling these golden points down to these three points here. Now we follow that

by FA and what does that do? It pushes these points along these lines down to a, b and c.

So taken together we end up getting to a, b and c like we want. So that is how the

criss-cross construction centered at A looks. Now let us compare that to the criss-cross

projectivity centered at C. So here we are taking the cross joints Ac intersect aC and Bc

intersect bC and we are connecting them with a line mC.

And now we compose perspectivity centered at c and C. So, the perspectivity centered at c,

what is it doing to A, B and C? Well, it is pulling them down to these three points here. Now

the perspectivity centered at C. What is it doing to these three points? It is pushing them

down to  a, b and c, so that is again we are doing and that is all fine.
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But what we really want to show is that mC which is the intermediately line we just choose

here and mA which is this intermediate line defined by these two cross joints. We want to

show that those are the same line. We need to show that mC and mA are in fact the same line.

So, both mC and mA contain the point Ac intersect aC because that cross joint is used in both

criss-cross constructions, the one centered at a and the one centered c, they both involve this

cross joint here.

Is there any other point that they have in common? Is there any other point that is contained

in both mC and mA? The answer is yes, right here, their intersections with the line L. From

the pictures, it looks like the intersections should be the same place. So can we prove that

they intersect the line L in the same place?
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So, let MC denote the point mC intersect L, this is the point of intersection of mC and L. Let

MA denote the point of intersection between mA and L. So, now our task is to prove that MA

= MC. The point MA was defined from the first criss-cross construction, MC was defined from

the second. If we can prove that they are the same then we can show that these two

intermediate lines mA and mC are the same and that will kind of solve our problem.

(Refer Slide Time: 17:53)

How do we show that they are the same? Well, here is a question. Where is MC map to under

criss-cross projectivity 𝚪C? Remember 𝚪C is Fc composed with FC. So, Fc is pulling these

points down and what is it doing from L to mC? What is it doing to the point MC? MC lies in

the intersection of the two lines that Fc is mapping between. So MC is fixed. On the other

hand, what does FC do? It is centered at C, so it is pushing points down from mC to  l.



So, what is it doing to this point MC? It seems to be mapping MC to a point over here which

we have not named yet. What is this point over here? Well, it is the intersection of l with L,

that is where MC is mapping to under the perspectivity FC centered at C.

(Refer Slide Time: 19:16)

So let us give that point in name. Let m denote the point L intersect l. Clearly 𝚪C maps MC

to m.

(Refer Slide Time: 19:27)

So, now let us look at MA. Where does MA map to under 𝚪A? Well, 𝚪A is Fa composed with

FA. Fa in perspectivity centered here, it is pulling points down from L to mA. What is it doing



to MA? It is fixing it because that is in the intersection. Now what does FA doing? Well, it is

pushing these points down from mA to  l.

And what is it doing to MA? It is mapping it to the intersection of l with L, it is mapping it to

the same place, it is mapping it to m.
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So,  𝚪A also maps MA to m, the intersection of  L and  l.
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So, note that 𝚪A and 𝚪C agree on the three points A,B and C already. I mean we have already

shown that 𝚪A and 𝚪C, the two criss-cross projectivities, both agree on A, B and C. So, they



are actually identical maps as maps from L to l. They are identical by the fundamental

theorem of projective geometry. Now, since 𝚪A(MA) = m and 𝚪C(MC) = m.

So it means that both of these projectivities which were in fact identical are taking MA and

MC to m. So, it follows that the point MA is equal to the point MC. What does it tell us? It tells

us that both mA and mC have two points in common: they have this cross joint and they have

this point MA which is the same as MC. So, they are in fact the same line.

These two mC and mA are in fact the same line, they are both the Pappus line and hence the

three cross joints are all collinear. So, we can just call it the Pappus line and these are all

collinear as we suspected. So, that proves Pappus’s theorem. I just mentioned that there are

actually many, many more proofs of Pappus’s theorem. Pappus’s theorem was first stated in

340 that is the first written record of it when Pappus himself wrote it in the year 340.

And in the intervening years there have been many different proofs to it especially as we

come towards the present day. So, it is kind of an interesting window to projective geometry

because there are proofs involved in just about every concept you can think of in projective

geometry, but this proof I like in that it does introduce too much additional machinery, there

is nothing extra we have to really introduce beyond the basic principles, basic concepts of

projective geometry so it is kind of nice that way.


