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For now I want to talk a little bit about projectivities as functions. In other words, I want to 

look at projectivities of the real line to itself. Because we can think of that as a function from 

R to R and in doing so we will see that some familiar operations on the real numbers can be 

realized or constructed as projectivities from the real line to itself.  
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Let L denote the x axis in the Cartesian coordinate plane which we think of as an extended 

plane so we have points in infinity lying out beyond our sites. So, it is really an extended 

plane, but we still have Cartesian coordinates on it. So, this is (0,0), this is (1,0), this is (0,1). 

We have the usual R
2
 Cartesian coordinate system and let us look at some plane projectivities 

from L to itself, from the x axis to itself.  
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So, the first example that I want to look at, which is an example/exercise because I am not 

going to fully verify I am leaving it to you to verify that what I am saying here is true. So, the 

first example is that given this diagram here which we will look into a little more deeply in a 

second. In this diagram the perspectivity FO1 centered at O1 from L to m followed by the 

perspectivity FO2 centered at O2 from m back to L, the projectivity  FO1 composed with  FO2 

gives you the function x goes to 2 x.  

 

So, this is a dilation or a scaling function which doubles everything. I am claiming that this 

projectivity that I have constructed here, as a map from the x axis to itself, as a map from the 

real line to itself, takes any real number and doubles it. So, let us see why that is true.  

 

So, let us just look at the number (1,0) first, think that is the number 1 in the real line. So, 

what does FO1 do? Well, it is projecting this point over to this point here. What is this point? 

Well you can work out that it is (1.5,0.5). By the way, m is the line y=0.5, it is another 

horizontal line. 

 



So, it is projecting this point (1,0) to this point (1.5,0.5). Then our second perspectivity 

centered at O2 is projecting this line m back to L. And it is projecting (1.5,0.5) into the point 

of (2,0). So, I was taking (1,0) to (2,0) or as a function of the real numbers it is taking 1 to 2. I 

claim that it is generally taking x to 2x for any x. So, I will leave it for you to verify. But 

maybe just to see another example, here is the point 1 / 2 let us just see where that appears to 

go. 

 

It appears to go here from the first perspectivity and it appears to go this way from the second 

perspectivity and indeed it looks like it goes to 1 more or less, but I will leave it to you  to 

verify that algebraically. Similarly 0, that is a bit easier to verify, goes up to here via the first 

perspectivity and back down to here via the second perspectivity, so 0 goes to 0.  

 

So, let us assume this is indeed x goes to 2x. So, I have to do a little work, but maybe for a 

general point, say (x,0), check algebraically where it gets sent to through this sequence of two 

perspectivities. That is an exercise. I am assuming that is true. Where does it take infinity? 

Actually, I do not even need to assume this function. I mean just from the construction itself, 

let us see where this projectivity takes the point at infinity.  

 

Well, just to refresh your memory, how do we figure out where perspectivity sends a point at 

infinity? Well the key is to draw a line through the center of perspectivity which is in that 

class of that point at infinity, but that was in the 2D case, now we are in the 1D case where 

there is a single point at infinity which I am denoting by the infinity symbol.  

 

So, the class corresponding to that point at infinity is just the class of horizontal lines. So, to 

find out where the point of infinity is, we have to draw a line through O1 that hits the point of 

infinity of L. So, to do that we have to draw a horizontal line through O1. And we have to see 

where that line hits m, to see where the line of infinity in O1 is going to. But this horizontal 

line does not actually hit m in the plane; it intersects m at infinity.  

 

So in other words, it is taking the point at infinity in L to the point at infinity in m because 

they share the same point of infinity because they are parallel to each other. L∞ equals m∞ 

and this horizontal line through O1 is hitting this point m∞ so it is fixing it. So, infinity goes 

to infinity. 
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And infinity is a fixed point of this projectivity x goes to 2x. Now is it the only fixed point or 

other fixed points? Maybe you remember that we just mentioned another fixed point namely 

0, it goes up to here and then back down to here, so 0 goes to 0, so there are actually two 

fixed points. Are there any other fixed points? Well, some familiarity with this function will 

tell you that there are no other real numbers that are fixed by the doubling function besides 0 

and in this case infinity is also fixed.  

 

So, we have two fixed points of this extended line under this projectivity and in general a 

projectivity from an extended line to itself is called hyperbolic if it has exactly two fixed 

points. So, this is an example of a hyperbolic projectivity from the line L to itself.  
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So, let us look at a second example this time of the function x goes to x + 1. Let us first look 

at this construction here, which I claim, represents this function x goes to x + 1. So, how to 

see that? Well where is (0,0) going? O1 is pulling (0,0) up to here. So by the way m is once 

again the line y=0.5. So, what is O1 doing? 

 

Well it is pulling (0,0) up to this point. What is that point? Well it is actually (0.25,0.5) you 

can work that out, because O1 is at (0.5,1). This is the line with slope 2. So, the first 

projectivity FO1 maps (0,0) up to (0.25,0.5). The second projectivity is going to push this 

point down to (1,0). So we are mapping 0 to 1. Similarly, what is happening with -1?  

 

So, (-1,0) is pulled up to this point via FO1 and then via FO2 is pushed down to (0,0). so -1 

maps to 0. So, you can verify for yourself algebraically that this construction here actually 

represents the function x goes to x + 1. Part of that will be on the assignment as well. So, do 

take a look at that. For now we will accept it as a fact. 
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And ask the question. Okay we accept this, this is the construction we can realize this as a 

projectivity, how many fixed points does this projectivity have? Well, as a function of the 

real numbers, x goes to x + 1, the standard translation by a unit, has how many fixed points? 

Well none. You are translating everything along, nothing can possibly be fixed. So, there are 

no fixed points for the real number version of this, but now we are on the extended line we 

have a point of infinity. 

 



Where is the point of infinity going, but once again we can figure that out by looking at the 

horizontal line through O1 and the horizontal line through O2. I just realized that I made a 

small mistake earlier. I mean I did not finish my explanation for why infinity is a fixed point 

in this example. I showed that the point of infinity at L is the taking the point infinity at m by 

O1and they are at the same.  

 

Basically that O1 fixes that common point at infinity, but you can easily see that O2 does the 

same thing. We can draw the horizontal line through O2 that is also fixing m∞ which is equal 

to L∞. So, the projectivity fixes it as well the composition of those fixes that as well. Okay 

going back to here, there is a single horizontal line I can draw between O1 and O2. 

 

And for similar reasons we can see that the point of infinity is fixed by O1 and is fixed by O2. 

And indeed m∞ is equal to L∞. Again they share one point at infinity and it is fixed by both 

these perspectivities, so the projectivity fixes it. So, we do have a fixed point, the point of 

infinity, but we only have one fixed point in this case and in general a projectivity from an 

extended line to itself is called parabolic if it has exactly one fixed point. So, earlier with two 

fixed points it is hyperbolic with one fixed point it is parabolic. 
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And let us see the third example and this is another function x goes to 1/x. By the way these 

functions are not fully random. There is a reason that I am choosing these functions to look at 

as projectivites and we will see why. So, let us look at x goes to 1/x. I know these 

constructions are getting a little weirder and weirder. This one does take some time to sit 



with. I do not expect you to look at it now. You need to spend about a few minutes working it 

out and I am not going to do that right now. 

 

So, that is an exercise. But maybe we will at least see that it works on this point 2. Where do 

theis 2 go? Well O1, let us just visually see it, pull it down to here and O2 pulls it up to here 

and 2 goes to 1/2. Similarly for 1 here, the projectivity through O1 does nothing, because it is 

on both L and m. So this point here is fixed.  

 

So, FO1 does nothing to it. What about FO2? Well FO2 also does nothing because it is again on 

the intersection of m and L. So, 1 is fixed.  We see that 2 goes to 1/2.  Maybe one more thing 

to quickly check, where does infinity go in this case? This is a little more interesting. So for 

L, by drawing a horizontal line through O1, we can see where the point L∞ gets mapped.  

 

 

 

 

It is mapped to a regular point on the line m, not mapped to the point of infinity for m. It 

mapped to this regular point (2,-1) of m. So, infinity is finally not fixed in this case. I will 

leave it to you to verify that this is indeed that map x goes to 1/x. Sorry I did not finish well. I 

will say it again. 

 

Let me just finish what I was saying: FO1 takes L∞ to (2,-1). What does FO2 do to (2,-1)? We 

have to see where it ends up. Remember we are looking at the projectivity. We want to see 

where F o 2 sends (2,-1) in order to see really where infinity goes. Well for that we need to 

draw a line between (2,-1) and O2. O2 is (-2,1). So, the line connecting negative (2,-1) and (-

2,1) is just this line which goes through (0,0), which hits L at the point (0,0). So L∞ is 

actually maps to (0,0).  
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So, infinity is getting sent to 0. I will leave it to you to check that it sends 0 to infinity. Also I 

will leave for you to check how many fixed points there are. Well we can use the fact that we 

know a little bit about this function, how many fixed points this function has. 
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Now, in general a projectivity of an extended line to itself is called elliptic if there are no 

fixed points. So this is a challenging exercise: can you construct an elliptic projectivity on 

this L? Construct a projectivity that honestly has no fixed points. Remember translation does 

not work because translation fixes the point infinity. We want a projectivity of the extended 

line which has no fixed points including the point of infinity. 

 



So, this is a bit tough. It is not the easiest thing to do, but it is an interesting exercise and it is 

a pretty hard exercise except let me give you a hint which will make it hopefully quite a bit 

easier. So, my hint is the following. Choose any three points A, B and C. And construct a 

projectivity that permutes them cyclically.  

 

For example you could send A to B, B to C and C to A. That is an example of the cyclic 

permutation of these three points and how do you do that construction? Well we saw that you 

can always construct a projectivity that takes any three points to any other three points here 

we only have one line though. So might be helpful to first project these three points on to 

another line, let us call it l. 

 

And let us just project, we can just choose any center of perspectivity if you want and we can 

project over here and that will give us all this a, b and c and now using the construction we 

have already seen you can now map a, b and c via another projectivity to A, B and C, but 

permuting the order. You can now find a projectivity that sends a to B, b to C and c to A.  

 

So, I will leave it as an exercise to construct that projectivity that taken together with this 

triple projectivity here, let us call this O1. So, FO1 followed by this green projectivity together 

is a projectivity that will permute these A, B and C cyclically. So that is relatively easy we 

know how to do it, it just a matter of working it out, but the harder part now is to prove that 

this map which permutes A, B and C actually has no fixed points anywhere clearly A, B and 

C are permuted cyclically none of those are fixed. 

 

But I claim that this map will have no fixed points at all anywhere including infinity, 

including 0. So, in other words it is an example of an elliptic projectivity. So, I am leaving 

that as a challenge for you to see if you can construct that and prove that it is indeed an 

elliptic. 
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So we looked at a bunch of projectivities that captures function of R
2
 and so far we have only 

looked at perspectivities centered at ordinary points of R
2
, but I just want to mention that 

there is nothing to stop us from considering perspectivities whose centers lie at infinity, at 

different points at infinity and when we do that here is an example of that. We end up 

mimicking parallel projection.  

 

Because our center of projectivity is infinitely far away, the lines from that are all going to 

appear parallel to each other. Remember any points on this ordinary plane when we connect it 

to a fixed point in infinity is going to give us a line in that parallel class corresponding to that 

point in infinity. So, they are all going parallel to this line here which is defining the point of 

infinity that I have chosen.  

 

So, the advantage to doing this is that we can construct perspectivities that mimic parallel 

projection. This is parallel projection, what you are seeing here is projecting by parallel rays 

of light and this simplifies many constructions. So this is a useful thing to be able to do 

parallel projection as opposed to only doing central projections which always does some 

distortion, parallel projection is a lot more friendly when it comes to certain Euclidian 

notions.  

 

So it does not distort ratios, it is the right way to say I guess, where central projection distorts 

ratios and creates a lot of overall distortion to deal with. So, it is nice to be able to do parallel 

projection, but for that we need points of infinity to be our centers of perspectivity. On the 



other hand the disadvantage is that if we are using points at infinity for our perspectivities 

then we can no longer do these constructions with a straightedge alone.  

 

Up until now all of these constructions that we have been doing, all these functions that we 

have been constructing, I can do these constructions just using a straightedge, no need for a 

compass, no need for a ruler or a measuring device. I am just using a straightedge so that is 

kind of cool, that these are constructions that you can do with a straightedge alone we are not 

taking any measurements except for we are given a coordinate plane. 

 

We are starting with a kind of a God given real line with measurements on it, but we are not 

using a measurement device beyond that, we are just using a straightedge. So, it is not a 

major disadvantage, but it is something to keep in mind that if we are doing parallel 

projection we cannot do that with a straightedge alone. 
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But let us take a look at the advantages. Let us see how this function x goes to x + 1 can be 

represented by perspectivities centered at points at infinity. So, we will use the following 

picture: let us take this point in infinity here and two parallel projections, this is just a slope 1 

line here and via parallel projection, by the slope 1 line, I am sending (0,0) to (1,1) and (1,0) 

to (2,1). 
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Let me just say it a little more clearly, as a perspectivity this is FO1 from L to m with center 

O1 equal to this point of infinity. Sorry why I am saying slope 1, I should be saying slope 1/2. 

No sorry, it is a typo, it is just slope 1. 
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And next we just parallel project everything down via lines like this. So, we follow with a 

perspectivity FO2 from m back down to L with center O2 which is the point of infinity 

corresponding to the set of vertical lines.  That will just take (1,1) to (1,0) and (2,1) to (2,0). 
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I have taken together we are mapping (0,0) to (1,0)  and (1,0) to (2,0). So, this is a little easier 

to see why this is a translation, it is actually much easier to see. So, that is the advantage to 

thinking of translation as given by this projectivity here.  
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So this is an exercise: can you simplify the constructions of the function x goes to 2x and x 

goes to 1/x using perspectivities centered at infinity. In other words, it is using parallel 

projection.  
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Now I have a question. We have special names for projectivities that fix zero points, one 

points and two points. Zero points is elliptic, one point is parabolic, two points is hyperbolic. 

What about projectivities that fix three or more points. So for example a projectivity that 

fixes A, B and C does it also get a special name. 
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And the answer is, if a projectivity from a line L to itself fixes three or more distinct points 

then it is the identity map on L. So, it is kind of a special name it is the identity. If it fixes 

three or more points it fixes every point which is why we are calling this the three fixed 

points theorem. If a projectivity from a line to itself fixes three distinct points, then it fixes 

every point on that line. When I say line here I really mean an extended line.  

 



So, the line includes a point infinity that is important to keep in mind. Just a quick illustration 

of this here is a projectivity that fixes three points. So, first I am looking at FO1 from L1 to L2 

that taking A, B and C down to these points here. Next FO2 from L2 to L3 that is taking these 

points to these three points here and finally FO3 from L3 to L1 that takes these three points to 

these original points here.  

 

So, A, B and C are going back to A, B and C in that order no permutation of them, A is going 

back to A, B is going back to B, C is going back to C, so these are fixed points. So, according 

to the theorem this projectivity must be the identity map that is the content of the three fixed 

points theorem.  
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So, how do we prove this? There are actually several possible approaches. There are many 

different proofs and this turns out to be very crucial results. So there are many ways of 

approaching it and we are going to sketch two proofs of it right now and in the upcoming 

lecture or actually maybe the next lecture we will prove it fully using a third approach.  
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So right now, let us give two sketches. Each sketch is going to have a gap which I will leave 

for you to fill, but they are a bit non-trivial. So, which is why I do not want to call it a 

complete proof and we are not going to use these proofs in the course. So, we will do a third 

proof which we will do fully after this. So, the first proof sketch uses something called the 

linear fractional function. So, this is my linear fractional function proof. 

 

And how does it work? We have already constructed several functions of the real line using 

projectivities. We have seen that the following functions can be constructed as projectivities x 

goes to ax, x goes to x + b and x goes 1/x, which means I am exaggerating a little. We saw x 

goes to 2x and we saw x goes to x + 1. But it is not much of a stress to imagine you can alter 

our construction a little bit to get any non zero real number a, as your scaling factor and any 

real number b, as your translational factor.  

 

So, I will leave that for you to verify, but using these constructions we have already seen it is 

pretty easy to get any of these functions as projectivities. Putting these together, what other 

functions can we get? So, taking combinations of these three functions, basically composing 

these functions, that is what I am allowing. 

 

Taking these three types of functions and composing them as many times as you want and in 

any order. What other functions can we get? It turns out that there is a nice name for those 

and nice structure for the entire class of functions that are generated by these three, namely 

they are linear fractional functions and they look like this x goes (ax+b)/(cx+d), where ad-bc 

is non zero.  



 

I guess, technically speaking ad-bc being non zero makes it an interesting linear fraction of 

function. If ad-bc=0, then what happens? Let us check that quickly. If ad-bc=0, then we have 

a problem, actually because then the numerator is going to be a scalar multiple of the 

denominator. What will happen then? Well in that case we are just going to get a constant, 

the x will cancel out and will get that x is going to a constant.  

 

So, that is not a particularly interesting function. I guess we do not want to call that a linear 

fractional function. So, we will exclude this case where ad-bc=0. But how do we see that 

composing these functions gives us a function of this form? 
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So that requires some algebraic manipulation, namely you can rewrite the standard linear 

fractional function in this form. Over here which is more clearly a composition of these three 

types of functions that I mentioned. In particular you can take x, you can multiply by c, so 

you can do a dilation of it. Then you can add d you can do a translation followed by another 

dilation by c followed by a reciprocation you put in the denominator followed by scaling by 

the constant bc-ad after that you can translate by a/c.  

 

So, it is a composition of these three types of functions when it is written this way and you 

can work out for yourself that these two expressions are indeed equal to each other. So, what 

this shows is that any linear fractional function can be realized as a projectivity because any 

linear fractional function can be written as a composition of these three types of functions and 

these three types of functions are all constructable as projectivities.  



 

Therefore, any linear fractional function can be composed, can be constructed as a sequence 

of many, many projectivities. 
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So, the interesting thing which is harder to see is that any projectivity realizes a linear 

fractional function. We have seen that any linear fractional function can be constructed as a 

projectivity, but conversely any projectivity you create, no matter how complicated, from the 

real line to itself is actually capturing some linear fractional function. It can be written down 

concretely as a linear fractional function. 

 

So, the challenge that I am not going to do which I am leaving as a kind of a challenge 

exercise is to try and prove this by putting coordinates on two lines in R
2
 and working out a 

general equation for a perspectivity between them. So, if you are interested in trying this and 

our reference is the book, Four pillars of geometry by Stillwell in which he does not 

completely finish this proof, but he does it as a series of exercises which might help you out 

if you are trying to do this. 

 

So, I would recommend that book and why does this matter so let us assume this is true. 

Projectivities from a line to itself are basically the same thing as linear fractional functions, if 

that line has coordinates, if it is a real line. Why does this matter? Why does it help us prove 

the three fixed point theorem? Maybe that is what we are trying to prove.  
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Well what are the fixed points of a linear fractional function. They are just solutions to this 

equation and we can easily rewrite that, we multiply both sides by cx + d and combine like 

terms and that gives us cx
2
 + (d-a)x - b = 0. This nice quadratic equation, how many solutions 

does it have? The solutions to this are precisely the fixed points of a linear fractional 

function. 

 

There is a special case to consider, it could be the case that a=d, so d-a=0 and b and c are also 

0 in which this just becomes x=x. So, in that case it has infinitely many solutions. Because in 

that case we really just looking at the identity function. If a=d and b=c=0 then this is just the 

identity function and then there are infinitely many solutions.  

 

On the other hand if that is not the case, you can solve this equation and there are at most two 

solutions. So, there are at most two fixed points; there cannot be three or more fixed points 

without being the full identity function. So, that proves the three fixed point theorem. 

Modulo, a challenge exercise which I will leave for you.  
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So, let us see another proof sketch. The second proof sketch I want to look at, I am calling the 

harmonic net sketch. This is going to be a totally different proof than the linear fractional 

functional proof. A completely different direction and in order to fully finish it, it would be 

helpful if you had a course in real analysis, but in fact you need that to fully complete the 

proof. 

 

But it is interesting to think about even if you have not had a course in analysis. I want to just 

describe it. So, remember that a point P is harmonically related to three collinear points A, B, 

C if we can write a sequence of points beginning with A, B and C and ending with P such 

that each point in a sequence forms a harmonic tetrad with three previous points in the 

sequence. 

 

Some three previous points, any three can be used in any order. So, remember harmonic 

tetrads means that harmonic tetrads are related by a diagram like this. They are a set of 

collinear points, there is a quadrilateral whose sides converge to A and C respectively and 

these diagonals hit that line AC in the points B and D. So from this picture we see that the 

point D is harmonically related to A, B and C or A is harmonically related to B, C and D or B 

is harmonically related to A, C and D, actually all of those are true. 

 

Let us try and make another point that is harmonically related to these. Let us draw a point 

here and let us do my harmonic tetrad constructions, we can have a quadrilateral here. I 

messed up. I am getting the same point A again because remember that is the entire 



coincidence of harmonic tetrads. This is again I am looking here at the harmonic conjugate to 

C with respect to B and D which is just going to be A.  

 

So, I cannot kind of mess up. I did not choose that. Now let us take these two points and let 

us connect C to both of them and D to both of them so that is going to give us this very small 

quadrilateral here. Now this is a quadrilateral and when we connect up to these two points we 

end up with a new point here which I am going to call E.  

 

So E is harmonically related to B, C and D and so on. We can keep adding new points this 

way that are harmonically related to existing points by doing more and more of these 

harmonic relations and it is obviously kind of cumbersome to actually do, but the interesting 

thing is that we can consider the set of all points generated by A, B and C harmonically 

which is called the harmonic net of A, B and C.  

 

And it consisted of all points harmonically related to A, B and C. As a challenge can we 

prove that a harmonic net is dense in the real line. Basically the point is that we can keep 

adding more and more points to this harmonic net.  
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And I claim that this harmonic net that we generate is dense in the real line. Between any two 

points there is a new point which is harmonically related to A, B and C and that is I am not 

going to prove that. Proving it does require some work and there are actually many different 

approaches to this proof. So, it is a fun thing to think about. I will leave it to you to do that, 

but let us assume that it is dense. Why does that matter?  



 

Well if a projectivity fixes three points A, B and C, we know that it fixes all the points in its 

harmonic net, since perspectivities preserve harmonic relations that is what we saw last week. 

So, harmonic nets are fixed under, a projectivity goes from a line to itself and fixes three 

points. It is going to fix an entire dense harmonic net and that is kind of a big deal because 

perspectivities are continuous. That too you have to prove we have not actually proven that. 

 

But if we believe that then we have a continuous map fixing a dense subset of the real line 

which then has to be the identity. So, that is a completely different type of proof of the three 

fixed point theorem using harmonic nets and harmonic tetrads. 
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And as I said we are going to give a complete proof of the three fixed point theorem in the 

final week of the course. So not in the next class, but the following class using a third 

strategy, in particular using the cross ratio. But in the upcoming lecture we are going to 

assume that this theorem holds and we are going to see how powerful it really is. In 

particular, where it is going to allow us to finally prove Pappus’s Theorem which we learned 

in the first week of the course. 

 

And we are also going to learn a theorem called the fundamental theorem of projective 

geometry which is going to really give us a better sense of what changes when we shift 

perspective, how many things are changing and how much control we have over those 

changes. So thank you and see you in the next class. 


