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So, the type of the permutation given by the product of these cycles (1, 3, 7) (2, 4, 5, 10),(9) 

and (6, 8, 11) is of type (1, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0) . So why is that? Well, there is precisely 

one 1- cycle, there is no 2-cycles in this, there are two 3-cycles (1, 3, 7) and (6, 8, 11) there is 

one 4-cycle (2, 4, 5, 10) and there is no other larger cycles. So, all these values up to 11 are 

going to be all 0, you cannot have anything larger than 11 because the number of elements is 

11.  

Now once you have such a type, then we can define the cycle indicator monomial of 𝜋 given 

by 𝑍𝜋 = 𝑧1
𝑐1𝑧2

𝑐2 … 𝑧𝑛
𝑐𝑛 So, this tells immediately what is the cycle structure. Look at the 

exponent of 𝑧𝑖, that will tell you the number of i- cycles. 
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Given a group G of symmetries let us define the cycle index polynomial of the group as  

𝑍𝐺 = 𝑍𝐺(𝑧1, … , 𝑧𝑛) =
1

#𝐺
∑ 𝑍𝜋

𝜋∈𝐺

 

So, the sum of all these monomials normalized by the order of G. So, this is the cycle index 

polynomial of the group C.  

This will be very useful we will see how this cycle index corresponds to the counting of 

colourings. So, as an example let us say that we have the 4-cycle X with the vertices {a, b, c, 

d} and look at the group of rotations of the cycle. So, what is the cycle index polynomial? 

𝑍𝐺 =
1

4
(𝑧1

4 + 𝑧2
2 + 2𝑧4) 

 Here, why is it 𝑧1
4? Because the identity has exactly 4 cycles. Then 𝑧2

2 because you look at the 

the square of the generator you will see that you will have 2 cycles of length 2. And then you 

will get 2 times the 𝑧4 because you will see that the generator and its inverse are 4 cycles there 

are 2 of them. So that will tell you this cycle index polynomial is  
1

4
(𝑧1

4 + 𝑧2
2 + 2𝑧4). 

Now as a homework you can look at the example to find 𝑍𝐻 where H is the rotations and 

reflections. So, find that as a homework.  
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We come to the main theorem that we wanted to prove which is Polya’s Theorem. So, Polya’s 

Theorem again as we noted before, what we wanted to do was, to count inequivalent colourings 

where the number of colourings is given. So, let X be an n-element set and G be a group of 

symmetries of X. Now let us consider a set of colours 𝐶 =  { 𝑟1, 𝑟2, … }. C could be finite or 

infinite but we will just take it to be infinite at the time being. Now look at the number of 

inequivalent colourings under the action of G where the colour  𝑟𝑗 appears exactly 𝑖𝑗 times. So, 

that is denoted by 𝜂(𝑖1, 𝑖2, . . . ) So, 𝜂(𝑖1, 𝑖2, . . . ) says that colour 𝑟1 appears 𝑖1 times, 𝑟2 appears 

𝑖2 times etcetera, 𝑟𝑗 appears 𝑖𝑗 times. So, look at such colourings and then see under the action 

of G how many inequivalent colourings are there.  
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Now let us define  

𝐹𝐺( 𝑟1, 𝑟2, … ) = ∑ 𝜂(𝑖1, 𝑖2, … ) 𝑟1
𝑖1

𝑖1,𝑖2,…

  𝑟2
𝑖2 … 

Which means that the coefficient of   𝑟1
𝑖1𝑟2

𝑖2 … is the number of inequivalent colourings where 

𝑟𝑗 appears 𝑖𝑗 times and sum over all these and you will get this polynomial.  

If C is finite then it will be polynomial, if it is not finite then you will get a power series. So 

you will see that this is basically a generating series and then we can look at this and the 

coefficient of this term in the series will be precisely the number of such colourings, the 

inequivalent ones, that is the definition of the generating function. Then 

𝐹𝐺( 𝑟1, 𝑟2, … ) = 𝑍𝐺(𝑟1 + 𝑟2 + 𝑟3 + ⋯ , 𝑟1
2 + 𝑟2

2 + ⋯ , 𝑟1
3 + 𝑟2

3 + ⋯ , … ) 

 So, this is what the theorem says. The theorem says that there is a direct relation between the 

cycle index of the group and the counting of this inequivalent colourings where the number of 

occurrence of each colour is fixed.  
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So, how do you prove this? To prove this suppose 𝑖1  + 𝑖2  + ⋯  =  𝑛.  So of course when we 

have only n elements we cannot use more than n colours even though the set of colours is 

infinite, the tuple that we are going to consider which is going to contribute anything is going 

to be always adding to n which is the cardinality of X.  



So, let 𝑖1  +  𝑖2  + ⋯  =  𝑛 and 𝑖𝑗 ≥ 0.  Let  𝑖̂ = (𝑖1, 𝑖2, … ). Now let us say that 𝐶𝑖̂ denote the 

set of all colourings where the number of times the colour 𝑟𝑗 appears is exactly 𝑖𝑗. So, as I 

mentioned before the permutations can only take such colourings in the colourings in 𝐶𝑖 to 

colourings in 𝐶𝑖, because the number of times the colour occurs cannot be changed by the 

permutations.  

So, therefore we can see that the group G whatever is the subgroup of the symmetric group we 

are taking, that group G acts on this restricted colouring 𝐶𝑖̂. That is any permutation 𝜋 if you 

take and any colouring in 𝐶𝑖̂ you take, 𝜋. 𝑓 is again an element of 𝐶𝑖̂. So, this restricted action 

of this group, I mean of each of these permutations let us say it is denoted by 𝜋𝑖̂ 

So, the action of 𝜋 on 𝐶𝑖̂. is denoted by 𝜋𝑖̂ . For each  𝑖̂,  𝐶𝑖̂ basically gives a partition of all such 

colourings and then for each partition the permutations acts within that partition. So, that is 

what we were saying. 
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Now we want to apply Burnside’s Lemma, so therefore we want to find the cardinality of  𝐹𝑖𝑥 

𝜋𝑖̂ . Now how do you find the cardinality of  𝐹𝑖𝑥 𝜋𝑖̂? If you look at any colouring f then this 

colouring is fixed by 𝜋𝑖̂ only if in any cycle  of 𝜋 all the elements get the same colour by this 

colouring f.  

If you are looking at a colouring f, then all elements of this particular cycle that we are looking 

at, 𝜋 should be given the same colour by the f. Otherwise when you rotate it, it is going to give 



a different colour. So, therefore that will be the same and of course the colour 𝑟𝑗 must appear 

exactly 𝑖𝑗 times because by definition, in  𝑖̂ , the action of 𝜋 and 𝑖̂ is going to basically map a 

set of vertices with the same colour to some other set of vertices exactly the same number.  

So, with this observation let us define  

𝐻𝜋 =  ∏(𝑟1
𝑗

+ 𝑟2
𝑗

+ ⋯ )
𝑐𝑗(𝜋)

𝑗

 

where 𝑐𝑗(𝜋) is the number of j-cycles in 𝜋. So, if 𝜋 is the permutation which is acting then 

correspondingly we define 𝐻𝜋 to be the polynomial as above. 

Now let us see what happens in this 𝐻𝜋. See, when you take the expansion of product you will 

get different monomials, that is what the polynomial is, it is the sum of monomials. Now how 

do we get one of these monomials? So, to get a monomial like this we have to choose some 

term let us say some 𝑟𝑘
𝑗
 from each of the factors, so each factor in this product we have to 

choose some element.  

So, we get this huge product of different sums and then a monomial in the whole product is 

going to come from by choosing some 𝑟𝑘
𝑗
 from each of these terms.  

Now what is the choice of 𝑟𝑘
𝑗
 ? 𝑟𝑘 is the variable which denotes the colour 𝑟𝑘. So, 𝑟𝑘

𝑗
 says that 

some j-cycle is coloured with 𝑟𝑘. All the elements in some j-cycle is getting the colour 𝑟𝑘. Now 

we know that in this product you can take some 𝑟𝑖
𝑗
 we can choose exactly 𝑐𝑗 times.  

So, therefore choosing a term of the type 𝑟𝑘
𝑗
 from every factor says that we are going to colour 

the set X that we are colouring, such that every cycle is going to be monochromatic. That is 

what it comes to. So, all elements of the cycle get the same colour that every cycle is 

monochromatic. Now the product of these terms will be some monomial something 

like 𝑟1
𝑗1  𝑟2

 𝑗2 … where we have used the colour 𝑟𝑘 number of 𝑗𝑘 times.  

So, this corresponds to whatever monomial we are looking at. Now it follows that the 

coefficient of this term that we are looking at  𝑟1
𝑗1  𝑟2

 𝑗2 … is actually equal to the number of 

elements fixed by the permutation 𝜋𝑖̂. The action of 𝜋 is 𝜋𝑖̂.What is the 𝐹𝑖𝑥(𝜋𝑖̂) that is precisely 

the coefficient of  𝑟1
𝑗1  𝑟2

 𝑗2 … 
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So, that is that was the claim that we want to make the coefficient of 𝑟1
𝑖1𝑟2

𝑖2 … in 𝐻𝜋 is 

 # 𝐹𝑖𝑥(𝜋𝑖̂). Now therefore we can write 

𝐻𝜋 = ∑ # 𝐹𝑖𝑥(𝜋𝑖̂) 

𝑖̂

𝑟1
𝑖1𝑟2

𝑖2 … 

 This is what we just argued before.  

So, now we can apply the result that is  

1

#𝐺
∑ 𝐻𝜋 =  ∑ ∏(𝑟1

𝑗
+ 𝑟2

𝑗
+ ⋯ )

𝑐𝑗(𝜋)

𝑗𝜋∈𝐺𝜋∈𝐺

=  𝑍𝐺(𝑟1 + 𝑟2 + 𝑟3 + ⋯ , 𝑟1
2 + 𝑟2

2 + ⋯ , 𝑟1
3 + 𝑟2

3 + ⋯ , … ) 

= ∑[ 
1

#𝐺
𝑖̂

∑ # 𝐹𝑖𝑥 (𝜋𝑖̂) ] 

𝜋∈𝐺

𝑟1
𝑖1𝑟2

𝑖2 … 
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But now what is the coefficient of this term in this summation. This is by Burnsides Lemma, 

this is precisely the number of orbits of 𝜋𝑖̂. That is how the Burnsides Lemma was stated. So, 

therefore this is precisely the number of inequivalent colourings using colour 𝑟𝑗 total of 𝑖𝑗 times. 

So, that is what the coefficient of the monomial means.  

So, this is what we wanted to prove, so we proved Polya’s Theorem as an application of 

Burnsides Lemma. What we proved is that the number of inequivalent colourings where the 

number of times the colour 𝑟𝑖 occurs is given by the tuple 𝑖1, 𝑖2 et cetera, is obtained by looking 

at the cycle index polynomial of the group G, 𝑍𝐺 , and for the variable 𝑧𝑖, I replaced it by 

summation 𝑟𝑗 raised to 𝑖𝑗.  

So, this will give you the generating function of this kind of colouring. So, that is what Polya’s 

Theorem is about. So, now let us look at some example, go back to this make sure that you 

understand the theorem well and then we can look at the examples. 
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So, one of the standard examples that you give is that of counting of necklaces. So necklaces 

of length l is, I think we mentioned this in one of the classes long time before, it is a circular 

arrangement of let us say coloured beads. So, we were looking at another type of necklace at 

that time where instead of beads we are using kauri shells and something like that, which is 

slightly different in some sense but for the time being we have uniform circular beads.  

So, we have a circular arrangement of this beads and we will assume that when we make the 

necklace the distance between any 2 beads is the same so that you get a regular polygon with 

the l vertices as the necklace. Now 2 necklaces are the same if one can be obtained by a cyclic 

rotation of the other.  

So, this is something that we will assume, this is the group action that we have, the symmetry. 

Then the number of inequivalent n-coloured necklaces, if you are going to colour the beads 

with any of the n colours, it is given by  

1

𝑙
∑ 𝜙 (

𝑙

𝑑
) 𝑛𝑑

𝑑/𝑙

 

where 𝜙 is the Euler function, and the 𝜙(𝑙/𝑑) is the numbers less than l/d and co-prime to it.   

So, the Euler function 𝜙 is the coefficient of 𝑛𝑑. So, this is what we want to prove. How do 

you go about proving this. So, if you want to apply Polya’s Theorem we want to look at the 

cycle index of the group, so let us find the cycle index of the group that we are looking at. The 

group is the group of rotations, so for the l-cycle.  
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So, let us say that our set is X ={ 1, 2, …, l} is the set of beads and the group of rotations of 

the necklace are generated by the permutation 𝜋 = (1, 2, … , 𝑙). So, if this is the generator then 

the group G is given by  𝐺 = { 1, 𝜋, 𝜋2, … , 𝜋𝑙−1}. Now what is the cycle structure for 

permutations in G? This is a very interesting example. Can you think of some nice properties 

of the cycle structures of the permutations in G. So, if you are looking at the group of rotations 

what can you say about cycle structure.  

So, all the cycles in each of the permutations will have the same length that is what I wanted 

to say. So, all the permutants will have the same length. So, can you think of why? Or can you 

prove this is true? For every permutation in G all its cycle lengths will be the same. So, if you 

write any permutation in G as a product of cycles, then all the cycles will have the exactly the 

same length. So, prove this.  
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So, why is this? Well if you look at the rotation and then try to represent it as using some 

modulo arithmetic you can easily prove this. And observe that if 𝜎 = 𝜋𝑚, where 𝜋 is generator, 

then 𝜎 has exactly 𝑔𝑐𝑑(𝑚 , 𝑙) cycles of length 
𝑙

gcd(m ,l) 
. So, this is an even more refined claim 

so prove this. Once you have this we can apply Polya’s Theorem. Polya’s Theorem says that 

once you have the cycle structure we can directly apply this.  

(Refer Slide Time: 26:11) 

 

Therefore, by Polya’s Theorem, we have, 
1

𝑙
∑ 𝑛gcd(m ,l)𝑙

𝑚=1  inequivalent coloured necklaces.  

But what we know is that gcd(m , l) = d if and only if  1 ≤
𝑚

𝑑
≤

𝑙

𝑑
 and gcd (

𝑚

𝑑
,

𝑙

𝑑
) = 1 



Using this we can write this same summation 
1

𝑙
∑ 𝑛gcd(m ,l)𝑙

𝑚=1  as 
1

𝑙
∑ 𝜙 (

𝑙

𝑑
) 𝑛𝑑

𝑑/𝑙 . So, therefore 

we can write as in this form. So, this is what we were asked to prove.  
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Now as a further observation, the property of the cycle structure of the permutations in G, we 

have the cycle indicator  

𝑍𝐺(𝑧1, 𝑧2, … , 𝑧𝑙) =
1

𝑙
∑ 𝜙 (

𝑙

𝑑
) 𝑧 𝑙

𝑑
 

𝑑

𝑑/𝑙

 

This again directly follows from the property of the cycle structure because all the other terms 

will be disappearing, they will not be here. So, therefore we will get exactly this. And but now 

I can write it also as 𝑍𝐺(𝑧1, 𝑧2, … , 𝑧𝑙) =
1

𝑙
∑ 𝜙(𝑑)𝑧𝑑 

𝑙

𝑑
𝑑/𝑙  , because I am just exchanging d and 

l/d because they are just divisors. we will see that the connection between ZG and this holds.  
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So, we wanted to find out FG. 

𝐹𝐺(𝑟1, 𝑟2, … ) =
1

𝑙
∑ 𝜙(𝑑) (𝑟1

𝑑 + 𝑟2
𝑑 + ⋯ )

𝑙
𝑑  

𝑑/𝑙
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So, this is how we use Polya's Theorem. Here are some homework questions.  

(1) Show that ∑ 𝜙 (
𝑙

𝑑
) = 𝑙𝑑/𝑙 . 



(2)  If we allow flipping of necklaces as well as the rotations, instead of the just rotations 

we also allow flipping or taking mirror images. Find the cycle indicators and the 

coloured necklaces. So, try to solve these question.  
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(3) Count the inequivalent colourings of a set of l elements using n colours under the action 

of the symmetry group 𝑆𝑋.  

(4) Then show that if ∑𝑖𝑐𝑖 = 𝑙,  then the number of permutations in 𝑆𝑙 with the 𝑐𝑖 cycles of 

length i is given by 
𝑙!

1𝑐1𝑐1!2𝑐2𝑐2!…
  

So, these questions are your homework questions. So with that we will windup the topic on 

Polya’s theorem. We can do more on this but let us stop with this for the time being. I will try 

to give you more questions if you want, there are several interesting questions, but at the 

moment these are your homework questions and then I will come up with more questions and 

send you soon.  

 

 


