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Okay! In the previous lecture we stated Burnside's Lemma which is the following. Given a 

finite set  Y and a subgroup G of the symmetry group 𝑆𝑌. Then recall that 𝐹𝑖𝑥(𝜋) is the set of 

all elements that are fixed by the permutation 𝜋 and the cardinality of 𝐹𝑖𝑥(𝜋) is clearly the 

number of cycles of length 1 in permutation 𝜋.  
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What is the orbit of group acting on a set Y? So, when you have the group acting on the set 

you get a partition into equivalence class because the G-equivalence is an equivalence relation 

and these equivalence classes are called the orbits. So, the elements which are taken by the 

action of a group like if I take 1 element it is going to  be a subset of the elements and these 

subsets from an equivalence class and that is an orbit. So, we get these orbits. 

Now the Lemma says that, if Y/G denote the set of orbits of G, then the number of orbits is 

given by the formula; 

|𝑌 𝐺⁄ | =
1

#𝐺
∑ # 𝐹𝑖𝑥(𝜋)

𝜋∈𝐺

 

So, the average number of elements of Y fixed by the permutations in G is actually equal to 

the number of orbits of G acting on the set Y. So that is Burnside's Lemma.  
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Now, let us look at an example. So, let Y = {1, 2, 3, 4} and the group G = { (1)(2)(3)(4);  (1, 

2)( 3, 4); (1, 3)( 2, 4); (1, 4)( 2, 3) }  and the group G′ = { (1) (2) (3) (4);  (1, 2)( 3)(4);  (1)(2)( 

3,4); (1, 2)( 3, 4)}.  So as abstract groups both G and G′ are isomorphic to ℤ2 × ℤ2.  

But as we have observed earlier, the action will be different because the cycle structures are 

different. So, the number of orbits of G is given by ¼ (4+0+0+0) =1 and on the other hand the 

number of orbits of G′ is given by  ¼ (4+2+2+0) = 2. So, the number of orbits of G and G′ are 



different, for example, in the case of G you get only 1 orbit and in the case of G′ you get 2 

orbits.  
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Now let us try to prove Burnside's Lemma. Now, for any element y in Y let us look at the set 

of all permutations which fix y, which is called the stabilizer subgroup of G, denote by 𝐺𝑦. So, 

𝐺𝑦 = {𝜋 ∈ 𝐺|𝜋. 𝑦 = 𝑦}. Then 

∑ # 𝐹𝑖𝑥(𝜋) =  ∑ ∑ 1 =  ∑ ∑ 1 = ∑ #𝐺𝑦

𝑦∈𝑌

 
𝜋∈𝐺

𝜋.𝑦=𝑦
𝑦∈𝑌𝑦∈𝑌

𝜋.𝑦=𝑦
𝜋∈𝐺𝜋∈𝐺

 



 

In above summation, I changed the order in the second step because I can as well count for 

each element how many permutations fix this. Now that is precisely the number of 

permutations which fix the element y, which is cardinality of 𝐺𝑦, which is the stabilizer 

subgroup.  
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Now let us see, can we look at cardinality of 𝐺𝑦 in another way. So, when we look at the action 

of the group, the elements in the orbit let us say 𝐺𝑦, so I denote by 𝐺𝑦, the orbit of y because, 

what are basically the orbits? So, if I take an element and look at all the other elements to which 

this element is mapped by elements of G. So, this form the orbit of y, so therefore it makes 

sense to denote it by 𝐺𝑦 or G.y.  

Now elements in the orbit 𝐺𝑦 of y occurs the same number of times in the multiset 𝜋. 𝑦 set of 

all permutations 𝜋. 𝑦 for 𝜋 in G. So why is that? And, how do you prove this? So, if you have 

the following 3 easy results like 2 left cosets are either equal or disjoint; this is something I 

asked you to go through or prove, then another easy result that we can show that 2 orbits are 

either the same or disjoint. And the number of left cosets of a subgroup is the cardinality of the 

orbit of y.  

So, stabilize of 𝐺𝑦 is the cardinality of the orbit of y, how many elements are there in the orbit, 

that is the number of left cosets of the sub group 𝐺𝑦. Now if you prove these 3, it will be 



immediately clear that the elements in the orbit occurs exactly cardinality of 𝐺𝑦 times. So, this 

will give you the identity that the cardinality of 𝐺𝑦 is actually equal to the number of elements 

in G by the number of elements in the orbit of y.  

(Refer Slide Time: 9:21) 

 

So, once you have this, we can just substitute so we get, 

1

#𝐺
∑ #𝐹𝑖𝑥(𝜋

𝜋∈𝐺

) =  
1

#𝐺
∑

#𝐺

#𝐺𝑦
𝑦∈𝑌

 

=  ∑
1

#𝐺𝑦
𝑦∈𝑌   , since order of G is fixed we can cancel it. 

Now how many times this particular term occurs in this sum? So, for every element in the orbit 

of y,  the corresponding term will be 
1

#𝐺𝑦
 because elements in the orbit stay together under the 

action of the group. Now the elements in that orbit are taken to the other elements in the same 

orbit, it does not go out of it.  

So, therefore you will see that exactly the number of elements in the orbit that many times the 

term 
1

#𝐺𝑦
 occurs, which means that the contribution of each orbit will be exactly 1, because each 

orbit has exactly that many elements. So, therefore this is actually counting the number of 

orbits, the contribution of each orbit is exactly 1.  



So therefore, it counts the number of orbits in the action of G on Y. So, that is what we wanted 

to prove,  

|𝑌 𝐺⁄ | =
1

#𝐺
∑ # 𝐹𝑖𝑥(𝜋)

𝜋∈𝐺

 

So, that is the Burnside's Lemma. 
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Now, let us look at an example, so let us look at the 6-cycles, let us say H, whose vertices we 

want to colour using n colours. So, you are looking at a regular hexagon where all the sides are 

equal, so that there is the symmetry. Now we want to colour the vertices using a set of n colours. 

Now, we say that two colourings are same if one can be obtained from the other by rotation.  

So, if I can just rotate the regular or hexagon, so that the colourings remain in the position and 

then I rotate it then I get other colourings. So, these colourings are all considered equivalent, 

basically I do not distinguish between colouring obtained by just the rotation of this. Now, how 

many inequivalent colourings are there under this? How do you use this? So, we want to find 

the cardinality of 𝐹𝑖𝑥(𝜋) and then we will get the formula.  
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So, let us look at the set of all colourings of the hexagon using let us say n colours, so we look 

at the set of all colourings that is our set Y. We are going to apply the group action on this 

colouring. Let G be the group of permutations of C that permute the colours cyclically, 

basically the rotations. We can see that, since there are 6 vertices you have exactly 6 rotations 

including the identity and you will see that this is actually isomorphic to ℤ6. 

Now of course these permutations, the subgroup of all rotations can be generated by a single 

element you just rotate once and then that rotation you can apply that to itself again. So, if you 

take this single rotation forward like1 going 2, 2 into 3 etcetera. And you apply it again and 

again like for example if it is 𝜎, 𝜎2, 𝜎3 etcetera you will get all the elements in the group.  

So, it is generated by the single element, something that we will use maybe. So, now let us look 

a colouring of the vertices, so let us say r, g, y, b, b, w, so red, green, yellow, blue, blue and 

white. Now once I rotate this, what happens? I can get for example, red going to green, green 

going to yellow, yellow going to blue, blue going to blue and blue going to white and white 

going to red.  

So, I will get w, r, g y, b, b and similarly I get b, w, r g, y, b et cetera by rotations. So, I can 

rotate and get this kind of colourings where I assume that 1 is now given the colour w after this 

1 rotation, I will get 1 will be given the colour w, so w goes here and similarly red goes to 2 

etcetera.  
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Now the orbits of the group G correspond to the equivalent colouring. So, we want to count 

the number of orbits because we want the inequivalent colouring. So, all the elements in the 

same orbit are basically equivalent. So, what we are seeing here is that these colourings are all 

equivalent because this is actually obtained from this by just rotation.  

This can be obtained by rotation etcetera therefore elements in this now orbit of this colouring 

are all equivalent. So, we want to find how many such orbits are there so that we will get the 

number of inequivalent colourings. Now what is that? By Burnside’s lemma 

|𝐶 𝐺⁄ | =
1

#𝐺
∑ # 𝐹𝑖𝑥(𝜋)

𝜋∈𝐺

 

Now if sigma is a generator of the group G, we have the following case. So, we have either 

identity, 𝜎, 𝜎2, 𝜎3 , 𝜎4, … . 
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So, these are the generators, so let us look at each case. Now if you are looking at the identity 

of G, then all the colourings are fixed by 𝜋 because it does not do anything. So, everything is 

fixed, so all the 𝑛6 colouring because for every vertex I have n choices, so 𝑛6 colourings of the 

hexagon are all fixed by 𝜋, the identity.  

So, the identity permutation is written like this (1)(2)(3)(4)(5)(6) each one is a cycle. Now, on 

the other hand suppose we have the generator let us say 𝜎 = (1 2 3 4 5 6), so which is the 

rotation by one. 1 going to 2, 2 going to 3, 3 going to 4, 4 going to 5 and 5 going to 6 and 6 

going to 1. So, if sigma is a generator, then which kind of colouring sigma fixes?  

Because it is rotating, you know the colours in the cyclic fashion, the 2 colourings are equal 

only if all the colours are the same because the colourings basically move around in circle and 

if I want these 2 colourings to be the same, I want all the colours in each of the vertex to be the 

same. Now if each vertex gets the same colour, since I have n colours, I have n different 

colourings possible where all the vertices get the same colour.  

So,  𝜎, for example, gives exactly n such colourings. Now what if you look at the 𝜎−1  which 

is the backward rotation, that is 1 going to 6, 6 going to 5, 5 going to 4, 4 going to 3 and 3 

going to 2 and 2 going to 1. That is, 𝜎−1 = (1 6 5 4  3 2), 𝑠o that 𝜎−1again the same, so if I 

just rotate by 1, all the way backwards again I want all the vertices getting the same colour 

otherwise the colouring will not be fixed by 𝜋.  

So, for each of these 2, I get n such colouring. Now what if 𝜋 is 𝜎2  or 𝜎4, then what are these 

permutations if 𝜎 is this, then you can verify that 𝜎2 = (1 3 5) (2 4 6). Now what is this 



permutation like for example 1 going to 3, 3 going to 5 and 5 going to 1. Similarly, 2 going to 

4, 4 going to 6 and 6 going into 2.  

If the colourings of this alternate elements are the same, then such colourings are fixed by 𝜋 

because if I move twice. I just need to get the same colour. Similarly, for each element if it 

moves exactly twice in forward then that colours is the same, then the colouring is okay. So, 

therefore such colourings will be all fixed by 𝜎2 but how many are there?  

Well, I can choose any 2 colourings for the first two elements then we know that the remaining 

must be all based on this. So, therefore I have 𝑛 ×  𝑛 =  𝑛2   possible colourings and in 𝑛2    

of this colourings, this 𝜎2 will be fixing each of them and similarly 𝜎4 which is (1 5 3)(2 6  4) 

will also be fixing such colouring.  

So, therefore 𝑛2 colourings will be fixed by 𝜎2 𝑎𝑛𝑑 𝜎4 . Now if 𝜋 = 𝜎3, then 𝜎3 is precisely 

(1 4)(2 5)(3 6). Therefore, once you fix the first three then the remaining 3 are the same. So, 

therefore I have 3 choices, 𝑛 ×  𝑛 × 𝑛 =  𝑛3  colourings are there and this 𝑛3colouring will be 

fixed by permutations of the form 𝜎3.  

So, this covers all possible elements, all the 6 elements in the group so therefore, we can now 

apply Burnside's Lemma.  
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The number of inequivalent colourings = 
1

6
(𝑛6 + 𝑛3 + 2𝑛2 + 2𝑛). So, if we are using exactly 

n colours, we get this. If I am using only one colour, what you will get (1 + 1 + 2 + 2)/6 = 1 

and for 2 you will see whatever it is.  

So, this is something that we can do by using Burnside’s Lemma. But now let us observe 

something else. So if you look at this count, that we have obtained here. We have 

1

6
(𝑛6 + 𝑛3 + 2𝑛2 + 2𝑛). So, let us see what is the exponent of 𝑛6 here. So, 𝑛6 comes from the 

identity of G and you will see that the identity has exactly 6 cycles in its cycle representation.  

So, the identity permutation has exactly six 1-cycles. Now what about this 2n? So, the exponent 

of n is 1, now how many cycles are there, for example in 𝜎. 𝜎. has only 1 cycle which is with 

all the 6 elements there is 1 cycle, 𝜎−1 also has only 1. So, you will see that the number of 

cycles in 𝜎. here for example is the exponent of n here, in the count.   

For each permutation you can verify that it is the case, for example when you are looking at 

the 𝜎 or 𝜎4 , 𝜎2 has 2,  2-cycles so the exponent is 2 for n. 𝜎4 also exactly the same and 𝜎3 has 

exactly 3 cycles. And therefore, we have exactly 𝑛3 colourings.  

Now why is this? Can you see why? This is something which is kind of easy once you think 

about it because let us say that, you are looking at a permutation and this permutation fixes 

some colourings. Now if a permutation is fixing the colourings, then look at any cycle of the 

permutation. So, if I look at the cycle of the permutation when you look at the permutation of 

the product of cycles, you take any factor which is a cycle.  

All the elements in this cycle, precisely it is rotating like by 1 or one step or it forms a cyclic 

rotation. Now if I have this rotation, this rotation will be in this the cyclic rotation, will fix the 

colouring only if all the elements that corresponding elements which appear in the rotation get 

the same colour. If 1, 3 and 5 are all getting the same colour only the rotation of 1, 3 and 5, 1 

going to 3, 3 going to 5 and 5 going to 1 will be also preserving or fixing the colours.  

So, therefore the permutation will fix the colour only if all elements in that particular cycle will 

get the same look. So, therefore this has exactly n choices because I am using n colours. Now 

look at the second cycle, the second cycle also the same thing because all the elements in that 

cycle must be getting the same colour, so again it has n choices.  



That is why the number of cycles determines the exponent of n. So, now it is clear, so we can 

even write it as a theorem, so we will go to that.  
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Before that let me set a homework. The vertices of a 5-cycle let us say C is to be coloured using 

k colours. Find the number of inequivalent colourings if rotations and reflections of colourings 

are considered equivalent. And once you do this formula again find the value when k is equal 

to 7, so that is a homework.  
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This is something that we already observed that if you look at an n-colouring of a finite set X 

under the action of a group G of the symmetries of X, then any colouring is fixed by a fixed 

permutation 𝜋, only if all the elements a cycle of 𝜋 get the same colour, something we observed. 

So, therefore the cardinality of 𝐹𝑖𝑥(𝜋) = 𝑛𝑐(𝜋), where 𝑐(𝜋) is the number of cycles in 𝜋.   
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So, therefore by Burnside's Lemma we can rewrite this observation as follows. If G is a group 

of symmetries of a finite set X and you are looking at the number of G-inequivalent n- 

colourings of the set X that is given by 
1

#𝐺
∑ 𝑛𝑐(𝜋)

𝜋∈𝐺 , where 𝑐(𝜋) denote the number of cycles 

of 𝜋. So, I already explained the proof, so I want you to write it down formally with all the 

necessary arguments and that is the homework for you. 
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Now, so here is a remark, if you want to get the number of colourings with some additional 

information like for example you want to count with respect to the number of occurrences of 

each colour, so I want to say that, I want to count the number of colourings in G-in equivalent 

colourings, where the red colour appears 3 times, blue appears 5 times and green appears 7 

times etcetera.  

So, I can do that also, this is something which we can do if you put it into use the observation 

that we had in the previous result that using the cycle structure of the permutations, we can 

count this. So, if you include that also into the formula then we should be able to clearly tell 

how many inequivalent colourings are there where each colour occurs a specified number of 

times.  

Now this becomes an even more clear when you observe that the permutations, the action is by 

the group G which is a subset of the symmetric group  𝑆𝑋. So, basically the action is by 

permutation so now the permutations of a colouring. Suppose I take a colouring and permute 

them whatever your permutations is, it is not going to change the number of times a given 

colour appears.  

If I look at a colouring and I permute the elements then, I am going to get another colouring 

where the number of times each colour occurs is precisely the same. So, the set of all colourings 

is now can be divided into based on the number of times each colour occurs and that will be, 

so the action of the group will be any subgroup that we are looking at, will be always restricted 

to each of this subclass of the colouring. 



So, with that observation we should be able to gain more insights, so that is what we are going 

to do in Polya’s Theorem. So, continuing our observations, so let us write the cycle type of a 

permutation as the n-tuple, so we are looking at permutations of n elements let us say, then the 

cycle type of permutation is 𝑇𝑦𝑝𝑒(𝜋) = (𝐶1, 𝐶2, … , 𝐶𝑛), where 𝐶𝑡 is the number of cycles of 

length t in 𝜋. So, this could be like 𝐶𝑖 could be 0, it is always a non-negative integer and you 

can look at some examples.  

 

 

 


