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Now, here comes one of the most important theorems that we are going to learn in graph theory, 

which is called Menger’s Theorem. So, at the end of this lecture you will see that this theorem 

is equivalent to many important theorems in combinatorics. In fact at least 7 of them we will 

list today and each of the seven theorems are basically equivalent to each other. So, if you 

prove one of them, from assuming that you can prove the others easily, that is the idea. So, they 

are kind of equivalent results.  

 This is very important theorem and is the Menger’s theorm of connectivity. Here is the 

statement of the theorem. Let u and v be non-adjacent vertices in the graph G. Then the 

minimum number of vertices that separates u and v is equal to the maximum number of 

internally disjoint u-v paths in the graph. So, the theorem says that there is a close connection 

between the cardinality of the separating sets and the internally vertex disjoint paths.  

So, you take u and v look at all the paths and find a subset of vertices which will disconnect u 

and v. So, if you remove these vertices, then there is no u-v path in the remaining graph then it 

is a separator. Find the minimum cardinality separator. That minimum separating set is actually 

equal to the maximum number of internally disjoint u-v paths in G and one direction you should 

be able to see very clearly because if every path is going to use the separating set vertices then  

you just use at least one vertex from the separating set to go from u to v.  



So, you definitely cannot have more than these many internally disjoint paths that is clear 

because every part contains one of the vertices and therefore each path have at least one, of 

course we can have more maybe! but then you cannot have more than the minimum separating 

set that many disjoint paths, so that is clear. But what is not immediately clear is that why there 

should always be that many internally disjoint u-v paths. So, this is what we are going to prove 

today and the proof is also very interesting. So, you should pay attention to it okay.  
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There are several proofs, but we are going to give a specific proof by induction on the number 

of edges. So, let the graph contain m edges.  G is the graph it has m edges and if m is equal to 

0, then this result holds right trivially, because there is no edges, so, there is no u-v path. u and 

v are non-adjacent vertices, there is no u-v path and m is also 0. So, separating set is also empty 

set. The empty set separates because there is no path.  

Therefore, the result is trivially true. So, now we can assume so, this is the base case. So, we 

can assume that the result holds for graph with size strictly less than m, where m is at least one. 

Now, let G a graph of size m. Now, without loss of generality, we can assume u and v are to 

be in the same component. Why is this? Because, if u and v are in different components, then 

there is no u-v paths and you do not need any vertex to separate u and v because they are already 

separated.  

So, that is empty set again. And therefore, we can assume that u and v belong to the same 

component. So, we assume that the graph has size m and u and v belong to the same component 

in the graph.  
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Now, we can assume something further. If you have a minimum u-v separating set, having let 

us say k at least one vertices ( k greater than 1) because zero is already done. Then definitely 

G has at most k internally disjoint u-v paths. This we have mentioned before because every 

path must use at least one of the vertices. So it cannot have more than k ivd (internally vertex 

disjoint) u-v paths. So, what remains to prove is to show that we can actually find  k such paths.  

Now, if k is equal to one again the result is immediate because if k is equal to one what it says 

is that, there is a cut vertex between u and v. u and v we can be separated by a single vertex 

means that there is a cut vertex that separates u and v.  

Now, if there is a cut vertex between u and v, then every path must go through that vertex. So, 

since every path must go through that vertex you cannot have more than one disjoint path, but 

because the u and v are connected, there is at least one path. Therefore, we get one path and 

that is the maximum that we can have. So, that also holds. So, k is equal to one is also 

immediate. Without loss of generality, we assume that k at least 2 because we have done this. 

So, we will assume that k is at least 2 for the remaining part of the proof.  
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So, we divide the proof into 3 cases. The definition of these cases are very interesting because 

it makes the proof very easy. Let us see how we define this case. The first assumption is that, 

you have this component in which you have u and v. u and v are connected and you have a 

separating set let us say X in the graph G. Now, the assumption is that for some separating set 

of the minimum cardinality, X is a minimum separating set for u and v and for at least one of 

the separating sets, minimum separating set has a property that there is a vertex which is 

adjacent to u as well as v. The assumption is that, there is some minimum separating set where 

a vertex in the set is adjacent to both u and v. So, there is an edge from u to x and also an edge 

from x to v. If this happens in the graph, this is the first case, suppose there is such a minimum 

separating set in that case, what we do is the following.  

So, what we do is we remove the vertex x from the graph G and you look at the graph G\{x}. 

So, in G\{x} of course, this edges right u to x and x to v will also go and then you get a smaller 

graph with less number of edges. And in this graph, we can see that X minus the vertex x (X-

{x})is a separating set for u and v because once you remove the entire set X, u and v are 

disconnected. I can do this in two steps I first remove the vertex x and then remove the 

remaining vertices in X.  

So, X – {x} is a minimum cardinality u-v separating set in the graph G\{x} because if there is 

even as a smaller one, I can remove that and remove x so that it gets separated. So, therefore, 

we will assume that is not the case, I mean, therefore, it is not the case.  

But the point is that if G\{x} has at least two edges less, so, I can use induction because the 

number of edges is less and I am inducting on the size of the graph, which is the number of 



edges. So, if the size of G\{x} is strictly less than m, this implies that we can use induction 

hypothesis. So, what is the induction hypothesis? If the number of edges is strictly less, then 

the result holds.  

This was cardinality k then you can find k-1 internally vertex disjoint u-v path from u to v in 

the graph G\{x}. So, in the graph G\{x}, we can find internally what vertices disjoint u-v path 

from u to v. There are k-1 such paths. So, once you get this many paths by induction. What you 

do is to just add the path u to x, x to v because u and v are destined to x.  

So, u-x-v is a path which was not present in the graph G\{x}. So, this path is going to be 

internally vertex disjoint from all other paths, from the all other paths that we obtained by the 

induction hypothesis. 

 So, adding this path I get k - 1 + 1 that is k paths. So, I get k paths in the graph which solve 

the case for this case. So, this case is okay. If the graph contains a separating set with a property 

that one vertex is adjacent to both u and v, then we can easily use induction. So, that is the case 

1.  
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Once we finish with this case 1, we will assume case 2 has the following structure. So, in this 

case we assume that for every minimum u-v separating set in the graph G, either every vertex 

in the separating set S is adjacent to u and not to v because if there is one which is adjacent to 

both u and v, then we are in the previous case.  

So, we will assume that every minimum u-v separating set has a property that all its vertices 

are either adjacent to u but none of the vertices are adjacent to v, or all the vertices are adjacent 



to v and none of them are adjacent to u. So, every minimum separating set has this property. 

This is the second case. Maybe this does not happen, but we will assume that suppose this 

happens, if one of these cases.  

What can we see from this structure? If every vertex in the separating set is adjacent to u but 

none of them are adjacent to v, then the u-v path of course goes through the vertex set S. So, 

every u-v path goes to a vertex in S, then from there it also takes some path to v. But, since 

there is no direct edge, there is at least one vertex in between when I go from S to v. So, S to 

v, we should contain at least one vertex.  

Which means that the length of the shortest u-v path from u to v (let us say), must contain at 

least 3 edges because u to S I should need one edge. S to v, I need at least two edges. So, the 

length of the shorter u-v path which is the distance between u and v is at least 3, because every 

path must go through S and then some path of length two from S to v. So, distance is at least 

3. We will observe that if the case 2 happens, then the distance between u and v is at least 3. 

Now, what we are going to do is the following. 
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So, since you know that there is a path of length at least three, we will take such a shortest path. 

So, you take a shortest u-v path, it can be 3, it can be 4 whatever it is, but the shortest one that 

you can find in the graph from u to v whatever path that you can find. So, consider P to be the 

shortest u-v path.  

So, it starts from u go to some vertex x in the set S by the separating set, then from x it goes to 

an immediate neighbour y, which is not the vertex v of course because there is no direct edge 



from x to v and then from y there is some path to v. It could be an edge or a longer path. So, 

you have the shortest path which goes from u to x, x to y and y to v. Now xy is an edge because 

that is how we defined the vertex y. So, the edge e is equal to xy.  

Now, what you will do is that in this graph, I removed the edge e I do not remove the vertices 

I just removed the edge e. So, suppose you have something like this. So, let me draw it for you. 

So, you have u then you have some vertex small x let us say in the set S and then some y and 

then some path to the vertex v. So, you have this u-x, x-y. So, I am going to remove basically 

this edge xy.  The xy edge is removed in the graph of course the other edges whatever it is are 

going to be there. I just removed the edge xy.  

Now, once I removed the edge xy what happens to the minimum u-v separating set, see I know 

that S is the minimum separating set which means that removing the vertices of S will make 

the graph disconnected and that is the smallest set. Now in this, if I remove one of the vertices, 

if S has k vertices and I remove the vertex x of course, I know that the remaining set has k 

minus one cardinality. But if I remove x, I also removed the edge xy because x is a vertex 

incident with the edge xy. 

So, removing the vertex x will also remove xy. If I remove only the edge xy the number of the 

minimum separating set cannot decrease by more than 1, that is what I wanted to say. Because 

just removing x itself will remove xy. So, in G\xy, the minimum cardinality u-v separating set 

cannot be less than k-1 because I can just remove x which will be a subgraph of G\xy and then 

that has separating set size actually equal to k minus 1.  

Now, the claim is that of course in a typical case once you remove an edge, it can also decrease 

the cardinality of the separating set but we are going to say that in this particular case, it will 

not decrease the minimum separating set in G\xy is actually again has cardinality equal to k. 

So, we are going to prove this but I want you to think about why in G\xy you cannot have 

separating set of size k - 1.  

Think and try to prove it yourself if we are in case 2, that is every minimum u-v separating set 

S in G has either all the vertices in S are adjacent to u and not adjacent to v or all the vertices 

are adjacent to v and not adjacent to u. In this particular case, if I remove this edge xy in this 

shortest u-v path, then it cannot decrease the cardinality of the separating set. So, think about 

this.  
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How do we prove this? Suppose for the contrary that there is a k - 1 element separating set in 

that graph G \ e. We call the set as let us say 𝑍 = {𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑘−1}. Now, what we know is 

that Z ∪ {x} is a u-v separating set for the graph G because once you remove x, you will get a 

subgraph of G\xy.  

So, if I remove all the elements of Z, then you get a separating set in the graph G because this 

is a separating set in G\xy and G\{x}. G\{x} is a subgraph of G\ xy. Now, since Z is a separate 

u-v separator for G\xy, it is also a separator for G\{x} because this one is a subgraph.  

But now we know that the minimum cardinality of a separating set is k in the graph. So, I have 

removed one vertex which is x and then I have removed one vertex x and then I removed the 

k-1 vertices in Z. So, it has cardinality k, therefore, it is a minimum separating set also. So, Z 

∪ {x} is a minimum u-v separating set in the graph G but we know that, by the choice of x, x 

is adjacent to u but not adjacent to v. So, that was our assumption. x is basically adjacent to u 

and because of the property of S, it is definitely not adjacent to v.  

Now, x is adjacent to u and not v, each of the 𝑧𝑖’𝑠 must also be adjacent to u, because Z ∪ {x} 

is a minimum separating set and we assume that in the case, every vertex in the separating set 

is either adjacent to u and not to v, or adjacent to v and not to u but one of them is already 

adjacent to u therefore, everything else must also adjacent to u. So, 𝑧1,…, 𝑧𝑘−1 is also adjacent 

to u but not adjacent to v.  

Now, this we can do because we assume that k is at least 2. Because, when k is at least 2, we 

do not hold to the induction trap. We know that this set is non-empty, this set {𝑧1, …, 𝑧𝑘−1}is 



non-empty and therefore, we can do the following. So, if I look at Z ∪ {y}, Z ∪ {y} is also a 

u-v separating set because once I remove y, again I remove the edge xy.  

So, G\{y} as we just noted earlier G\{x} similarly G\{y} is also a subgraph of G\xy. Now 

because this is a subgraph of G\xy, if I remove 𝑧1 to 𝑧𝑘−1 which is the separating set for G\xy, 

then I get a u-v separator for the graph G also. So, we see that Z ∪ {y} is also a separating set 

for the graph G.  

Now, Z ∪ {y} is a separating set now, 𝑧𝑖’𝑠 are adjacent to u because we proved in the previous 

case, we are not changed the 𝑧𝑖. But because of the property of the case, y also must be adjacent 

to u because we said that every vertex in any minimum separating set is also adjacent to u. 

Therefore, there must be an x from y to u also.  

Now, this contradicts the fact that p was a shortest u-v path because we said that we started 

with a shortest u-v path which means that we go from u to x to y to v was of the shortest length. 

But now if y is adjacent to u, I can actually go from u to y and then continue this path which 

gives me even smaller path but by assumption P was the shortest path.  

So, this is a contradiction and therefore, we cannot have a separating set of size k - 1 in this 

case. So, G\xy cannot have a separating set of size k - 1. But G\xy has a separating set of size 

k only. So, every separating set in G\xy has cardinality k. But what we achieved by doing this 

is that we got a graph with smaller size because G\xy has strictly less number of edges and 

therefore, we can assume induction.  

So, by induction hypothesis this graph G\xy has k internally vertex disjoint path from u to v. 

But all these paths are internally disjoint paths in the graph G because you know xy is an edge 

whether I can choose to put in the path or not I can just throw it away. So, all the paths in G\xy 

are also paths in G. Therefore, by induction I get k internally vertex disjoint path in the graph 

G\xy and therefore, in the graph G. So, case 1 and case 2 are done.  
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All it remains is our case 3 and since we already assumed that case 1 and case 2 are not there 

so, we can assume that you cannot find a separating set which is having a vertex which is 

adjacent to u and v and you cannot find a separating set, you do not have the property that every 

separating set has either every vertex is adjacent to u or adjacent to v. So, that is not the case 

because these two cases are not there, we will assume the following.  

We can find at least one minimum u-v separating set that is a W such that no vertex of W is 

adjacent to both u and v. And that is the first case first case does not happen because in that 

case we will apply the first case and W has at least one vertex not adjacent to u because if every 

vertex of W is adjacent to u then again so, it will fall into the first case, if every separate set 

had this property, but because at least one separating set does not have that property, we can 

say that there is some W where at least one vertex not adjacent to u and at least one vertex 

which is not adjacent to v.  
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So, which means that we are in a case like this. So, we have u and v and W is a minimum u-v 

separating set and at least one vertex in W is not adjacent to u and at least one vertex in W is 

not adjacent to v. Now, we are in the third case. So, if this is the case, let us list our separating 

vertices, let us say 𝑤1, … , 𝑤𝑘. What I am going to do is the following. So, since W is separating 

set, every path from u to v must cross W.  

I cannot go from u to v without using some vertex of W. So, I am going to define a subgraph, 

by starting from the vertex u traveling paths and going through the vertices of W and the first 

time I hit a vertex in W in a path I just stop and I mark that path, add that path. Then I look at 

another path. So, I look at all the paths from u, which starts in u and ends in W where I stop 

the path the first time I crossed W. I do not want to go further after I reached W, I do not want 

to go any further. So, every paths starts from u and reaches W for the first time.  

All such paths I take, so this forms a sub graph of the graph G. So, all the u to W paths,  starting 

from u and ending in W where I do not repeat vertices of W. I take this subgraph and then I 

add a new vertex called v′. What I do is that I make v′ adjacent to exactly all the vertices of W, 

𝑤1 to 𝑤𝑘. 

So, I take this subgraph u to W paths together with this new vertex that I am going to add that 

I call the graph 𝐺𝑢. 𝐺𝑢 is not a subgraph of graph, but it is a graph obtained by adding v′ to this 

subgraph of G by the following way. Similarly, I look at all the paths starting from W and 

going to v without repeating the vertices of W.  

So, all the path starting from here and going to v or I can just look at the path from v to W 

without repeating the vertices. So, collect all sets W-v paths and that subgraph together with 



the new vertex u′, which is adjacent to all the vertices of W. This defines the new graph𝐺𝑣. So, 

I have the graph 𝐺𝑢 and I have the graph 𝐺𝑣.  

Now, the interesting property of 𝐺𝑢 is that the number of edges in 𝐺𝑢 is strictly less than the 

number of edges in G because we assume that there is at least one paths from some vertex to 

v. Since this vertex is not adjacent to v, you need to take at least two edges to go here. So, if in 

this graph, I have added exactly k edges from v′ to W but here I have at least k +1 edges because 

v to every W there is a connection and at least one is not a direct edge.  

So, I need at least k + 1. So, the number of edges in this graph is strictly less than the number 

of edges in this graph. But of course, W is a u-v separating set, minimum u-v separating set 

because we did not remove anything in this part and to separate W, I need to remove each of 

them because again if I reach any other vertices in W, I can go to v′.  

So, u-v′ separator W is a minimum separator for 𝐺𝑢 but now for a smaller graph of cardinality 

strictly less than m, cardinality of 𝐺𝑢 is strictly less than m, I can use induction. Using induction, 

I can find k internally vertex disjoint u-v′ path in the graph 𝐺𝑢. Similarly, I can find k internally 

vertex disjoint u′-v paths in the graph 𝐺𝑣.  

So, I have k, u′-v path which are internally vertex disjoint and I have k, u-v′ path which are 

also internally vertex disjoint. Now, it is just a matter observing that if there are such paths, 

those paths must use precisely one vertex of W because there are k such vertices in this graph, 

one vertex of W. So, these edges must be precisely the edges used to define this k path because 

there are only k edges here and each of them has to be used exactly once. So, therefore, what 

we get is k ivd path.  

So, there is path from, 𝑤1 to v, 𝑤2 to v, 𝑤𝑘 to v. So, these paths are in 𝐺𝑣 similarly, I have a u 

to 𝑤1 paths, u to 𝑤𝑘  paths because these paths must be going through u to 𝑤1 and v′, u to 𝑤2 

and v′, u to 𝑤𝑘 and v′, u′ to 𝑤1 and v etcetera. But now, these paths are all internally vertex 

disjoint similarly, these paths are also internally vertex disjoint. So, what I do is that I take the 

u to 𝑤1 paths and join with the 𝑤1 to v paths.  

So, u to 𝑤1 path in the graph G and in this, from this part I take the w1 to v paths. Now, that 

cannot be intersecting u to 𝑤2 paths and 𝑤2 to this path because we were very careful in 

selecting the subgraph from u to v that we do not repeat the vertices of W. So, therefore, once 

I reach W from here to hear there is no vertex or edge which is used on this path.  



So, these parts of the graphs are basically disjoint except for the vertices of W. So, I get 

internally vertex disjoint path u to v through w1 through 𝑤2 through 𝑤𝑘. So,  I have constructed 

k paths from u to v in the graph which are all internally vertex disjoint. So, that is the proof of 

case three and therefore, we finished all the cases 
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So, 𝐺𝑢 is the graph obtained by looking at all the u-W paths terminating at the first hit of 𝑤𝑖 

and adding a new vertex v′ adjacent to v that is the case I am just describing in words. Similarly, 

𝐺𝑣 is obtained by all 𝑤𝑖 −v paths using at most one vertex of the 𝑤𝑖 and adding u′ adjacent to 

each of the 𝑤𝑖’s. 
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And since sizes of this graph 𝐺𝑢 and 𝐺𝑣, are strictly less than m, using induction hypothesis we 

have k internally vertex disjoint u-v′ paths in 𝐺𝑢 and k internally vertex disjoint in u′- v paths 

in 𝐺𝑣. By the construction of this graph 𝐺𝑢 and 𝐺𝑣, each such path in 𝐺𝑢 is u - 𝑤𝑖 paths and 𝑤𝑖 

-v′ edge. 

Similarly, in 𝐺𝑣 we have this case and combining these paths you get the internally vertex 

disjoint paths in the graph. So, that is Manger’s theorem.  What we have proved is that if u and 

v are non-adjacent vertices in the graph G, then the minimum number of vertices that can 

separate u and v is equal to the maximum number of internally disjoint u to v paths in the graph. 

This is a very, very important theorem and we will use it now to prove some other results, some 

other important theorems. 

 

 


