
Combinatorics 

Professor. Dr. Narayanan N 

Department of Mathematics 

Indian Institute of Technology, Madras 

Mycielski Graphs 

(Refer Slide Time: 0:15) 

 

 

So, what we have observed this much so far is that the there is a lower bound that we found 

which is 𝜔(𝐺), the clique number and an upper bound which we found which is Δ(𝐺) + 1. the 

upper bound with the chromatic number. So, the chromatic number is between these two. Now, 

we can ask many questions like when is this lower bound attained? It is an interesting question 

there are several classes that we know attain this, but we still do not know universally when. 

Then can 𝜒 be much larger than 𝜔(𝐺). 



 We know that, the cliques will make the chromatic number large. If you have a large clique 

with let us say with, t vertices then we need at least t colours. Now, can you have t to be small, 

the complete graph omega to be small and then make the chromatic number much larger than 

𝜔, the clique size. So, because in the case of odd cycles, the Δ  is just 2 but that does not say 

that enough for very large numbers, chromatic numbers we can have property, is it possible. 

So, here is an interesting result which says that we can have graph without triangles, where the 

chromatic number is as large as we want.  

What do you mean by Triangle? Triangle is three vertices which are adjacent to each other, 

which is a complete graph on three vertices. Now, if I have several vertices and if there is no 

triangle, then I cannot have any complete graph more than complete graph on two vertices and 

edge because if you have any larger complete graph every vertices are adjacent so, therefore, 

you will automatically get a triangle as a subgraph. So, when there is no triangle, we know that 

the clique number omega is going to be 2. So, what we are saying is that we have graph with 

omega is equal to 2 and chromatic number as large as we want and how do you do that?  

So, of course there are many ways to do this but one famous result was, the construction that 

is given by Mycielski. So, Mycielski constructions shows that if you are given a graph which 

does not contain triangles and have some chromatic number let us say k, then I can make a 

graph from this graph a new graph whose chromatic number is strictly larger than k, in fact, it 

is equal to k + 1 and there is still not triangle. So, I start with a triangle free graph, I make a 

new graph the chromatic number increases by one without getting triangle. Therefore, I can 

keep on doing this so I can make the chromatic number larger and larger.  

So, what is the procedure? The procedure is the following. Here is a small example. Given this 

graph, I take the graph and keep it as it is, one copy. So, I get a copy of the graph. Now I make 

a duplicate of every vertex. So, duplicate of vertex means that, there is a copy of 𝑣1 which I 

call 𝑢1 and there is a copy of 𝑣2 which I call 𝑢2 etcetera. So, I make this the copies of this 

graph. And then I make the neighbours of 𝑢1 are precisely the neighbours of 𝑣1. So, 𝑣1 has the 

neighbour 𝑣2, so therefore 𝑢1 has a neighbour 𝑣2,  𝑣2 had neighbour 𝑣1, therefore 𝑢2 has 

neighbour 𝑣1. 

Whatever is the neighbour of 𝑣1 in the graph G, that same vertices are going to be the 

neighbours of the corresponding vertex here also. So now whatever graph I get from here, 

finally I am going to add a new vertex called w, and w is adjacent to all the new vertices that I 

introduce, whatever is the number of vertices here. I am going to make w adjacent to each of 



them. Now, 𝑢𝑖’s form an independent set, that is immediately clear because you can see that 

𝑢𝑖’s there is no edge between them because they are not neighbours of any of these vertices in 

this graph. So, therefore, they form an independent set.  

So, when I add w to these guys this is not going to create any triangle because if it creates a 

triangle that must be some edge here. Now, similarly, there was no triangle in this graph. So, 

now there is no triangle here now, can this create a triangle? Now 𝑢1 is adjacent to to all the 

neighbours which were copies of the neighbours of 𝑣1. So, if you look at the graph with this 

𝑢1, this 𝑢1 cannot be part of a triangle because u1 is precisely like 𝑣1 in the graph. If you look 

at and check the graph with addition of 𝑢1.  

If there is a triangle involving 𝑢1, there is a triangle also involving  𝑣1 because that is a triangle 

in this graph only. Any triangle here is also a triangle here. So, this is true for every single 

vertex and because there is no edge here, we do not have to look at two of them together and 

therefore, I show that this graph is triangle free. So, I get a triangle free graph by doing this and 

then now, I want to show that the chromatic number also has increased by 1.  

Now, how do you show this? To show that the chromatic number is increased by 1, we have to 

first show that there is a colouring with one more colour and we have to show that there is no 

colouring with the chromatic number of G many colours. So, how do I do that? Here is an idea. 

Let us first show that with the k + 1 colours, the colouring is possible. That is easy because I 

start with a colouring of the graph G, the first graph that I started with.  

Now, whatever is the colouring here, each vertex let us say 𝑣𝑖 has some colour, I use the same 

colour to colour 𝑢𝑖 also. Now because there is no edge between 𝑢𝑖 and 𝑣𝑖, I can give the same 

colour here no problem and this colour of course is okay to give because this vertex is adjacent 

to only the neighbours of 𝑣1 and 𝑣1 I have given this colour C and because all the neighbours 

of 𝑣1 gets different colours other than C, all the neighbours of 𝑢1 also get the colour differently. 

Therefore, 𝑢1 will not have any problem with the colouring.  

So, this I can do for any 𝑢𝑖. So, therefore, I can use the colour of 𝑣𝑖 to be equal to the colour of 

𝑢𝑖. So, I get all these vertices, the same colour that is happening here and now for w, I give a 

new colour whatever its the chromatic number plus one. So, one more colour I give and that 

new colour. Because it is a new colour, it will not create any problem with any of the the 

existing colours and therefore I get a proper colouring with 1 extra color.  



Now we want to show that, there is no colouring with chromatic number of G many colours. 

So, let us say that chromatic number of the graph is k, then I want to show that there is no k 

colouring of the new graph. Now why there is no k-colouring of the new graph. Suppose there 

is k-colour, so we will start by assuming that there is a k-colouring of this new graph.  

Now, suppose there is like a k-colouring of this new graph. Then it uses this k colours atmost 

this k colours 1 to k on the vertices. Now given any colouring, so this is one property of 

colouring, given any colouring let us say using let us say colour red, blue, green etcetera. I can 

always change the names of the colours. I will say that all the red vertices now I am going to 

call new green and all the green vertices in the original graph, I am going to call it as red.  

So, I just changed the names of red and blue to each other. So, red is now the new blue I mean  

the new green and green is the new red. So, this is just renaming the colours, it does not affect 

anything about the properness of the colour because earlier it was called red, now it is called 

blue or green whatever.  

So, therefore, I can always change the names of the colours as far as I change uniformly 

everywhere. All the red I changed to green and all the green I changed to red. Then it is okay. 

So, therefore, we can assume without loss of generality that the vertex w is coloured with the 

colour k, just to make the argument easier. So, we will assume that the vertex w is coloured 

with the colour k.  
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So, here is a better picture I think. So, we have this graph G and 𝑢1 to un and 𝑢𝑖 is adjacent to 

all the neighbours of 𝑣𝑖. So, 𝑢𝑖 and 𝑣𝑖 are basically clones of each other, exactly the same 



vertex. Just one copy of 𝑣𝑖. And 𝑢𝑖’s are independent and then w is adjacent to all of the 𝑢𝑖. 

So, now, to show that there is there is no k-colouring I will assume without loss of generality 

that w is coloured with colour k. Now, because w is adjacent to all the 𝑢𝑖 's, 𝑢𝑖’s cannot be 

coloured with colour k. So, therefore, 𝑢1 to 𝑢𝑛 must be coloured with colours - 1 to k - 1, this 

must be the colours that is used on 𝑢𝑖 because k cannot be used here.  

Now, if 1 to k - 1 is used on 𝑢𝑖 I claim that I can use the same 1 to k - 1 to give a colouring of 

G also. Why is that because, see 𝑢𝑖, whatever colour is for 𝑢𝑖 that is adjacent to the vertices 

here. So, the colour of ui is not going to be used on the neighbours of 𝑣𝑖 because 𝑢𝑖 and 𝑣𝑖 

share the same set of neighbours. So therefore, since 𝑢𝑖 is given some colour whatever the 

colour it is, that colour can be given to 𝑣𝑖  also because the neighbours will use different colours.  

So, this I can do for every 𝑢𝑖 which means that the colours used here can be exactly used on 

the colours 𝑣1 to 𝑣𝑛 but this says that I am using  just 1 to k- 1 to colour all the vertices of the 

graph G. But G was a graph with chromatic number k, it means that there is no k - 1 proper 

colouring. So, this contradiction proves that, there is no colouring where, only we are using k-

colours. So therefore, the chromatic number is at least k + 1. We already proved that it is 

actually at most k + 1. So therefore, the chromatic number increased by exactly one.  

So, we get a graph from triangle free graph, we get a new triangle free graph whose chromatic 

number increases by 1. Now I can start from this new triangle free graph and increase the 

chromatic number again by one. I can keep on doing this. So, I get larger and larger chromatic 

number. So, this is called Mycielskian construction, and such graphs are called Mycielskian.  

So, given a graph G, the Mycielskian of G is the graph we construct this way. Take the graph, 

make copies of each of the vertices, and which means that exactly the same numbers of vertices 

in the graph G and because it is the new independent set, I make this new vertex adjacent to w 

and then I get this new graph G. So, this is the construction.  
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Now, there is another famous result of Paul Erdos. It says that we can have graphs with arbitrary 

large girth and arbitrarily large chromatic numbers. So, what is the girth? So, the girth of a 

graph is the length of the shortest cycle. So, we say that it is not just triangle, we can make your 

cycle as large as we want. The smallest cycle is as large as we want. So, there is not going to 

be any other edges connecting this. This cannot be an edge connecting because cycle will 

become smaller. So, you will have all the cycles be large enough in the graph.  

So, as large as you want you can make the smaller cycle and then you can make the girth I 

mean the chromatic numbers also as large as we want. So, this is using a probabilistic method. 

We will probably not discuss the proof but we will learn the some of the tools required to work 

out this details. So, this is a very old result of Erdos and very influential one and you will see 

that this result precisely the result that Erdos proved, was used to prove the Hedetniemi’s 

conjecture. May be I will mention it soon.   

So, this is a very influential result and very famous result. And it has so many applications like  

on existential graph theory, where you show that you do not tell you how to come up with a 

graph like this but it will tell you there must be some graphs.  
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Now, a very important operation in graphs is called contraction of edges. So, the definition is 

as follows. So, given a graph G, it is a simple graph and some edge let us say uu′. Now what I 

do is that I take the graph G and delete the edge e. So, just remove the edge e, then identify the 

vertices u and u′ to make a new vertex, let us say u*. 

I am not doing anything to any other vertex the adjacency remains the same for u, all the 

neighbours are going to be there except the one that we just removed and for u′ all the remaining 

neighbours are as it is. Now I basically identify this u and u′ which becomes a single vertex. 

So, all the neighbours of u other than u′ will be there in the new graph. All the neighbours of 

u′ other than u will also be neighbours of this new vertex. So, it is new graph. This is called the 

contraction of the edge.  
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Here are some examples. I start with this graph, then I find the graph G\e by removing this 

edge that we fixed. So, e is the edge which is cc′. So, I remove e, I get this graph. Now, I 

identify c and c′ which means that c and c′ becomes vertex c*. The neighbours of c and c′, c 

had the neighbour b, c′ had neighbour b and they are still neighbours.  

Then c also had neighbour a, c′ has neighbour a, so c* will have neighbour a. After contraction 

of this edge I will get this graph G. I denoted it by G/e. So, this is one example. So here is 

another example. So, I start from this graph, I take the edge u u′ as the edge to contract. So, it 

means that I delete this edge. Now I identify u and u′ to u*. So, of course the neighbours of u 

which will be 4 and 1, neighbours of u′ which is 2 and 3 will be neighbours of u*.  

Remaining neighbourhood remains as it is and that is it. So, you get G/e. So, this is the 

contraction of process. Now contraction is very important. We will not go into the details of it, 

because, you start with any graph G and you can apply as many as deletions, contractions or 

vertex deletions also possible if you want. Then you will get some kind of graph from the 

started graph. So, these graphs that you can obtain by any sequences of edge contractions, 

deletions and vertex deletion are called minors of the graph.  

So, there is a huge area called minor theory which studies like you know to classify graph based 

on its miners, what are the properties many important results have improved using this. So, 

there is a whole set of courses one can offer based on this minor theory, not one course, several 

courses. So, it is like the huge area and I really have not looked much into minor theory but it 

is a very interesting area with many applications.  



There are some few things we will see in a graph theory course in minor theory like, things like 

classification of planar graphs using its minors and things like that. So, these things we will not 

discuss in this course, we can do this in an elective course on graph theory. So, I will not discuss 

minors for the time being. I just defined it because, we need this operation to look at something 

else. So, what is that?  
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So, given a graph G. So, first thing that we said that what is the chromatic number which is the 

minimum number of colours which suffices to colour the vertices of the graph such that 

adjacent vertices get different colours. Now, another combinatorial question that one can ask 

is given a graph and let us say a set of colours, let us say I tell you I am giving k colours because 

all the sets of same cardinality are same for us. 

We can just assume that, for the set once you know the cardinality, you will just assume the 

numbers from 1 to k  are the colours. So, given a graph G and a number k, I can ask how many 

k-colourings how many colours, how many different colourings of the graph are possible with 

using exactly k-colours? So, the number of k-colouring of a graph G. So, this number is a 𝜒(𝐺) 

, k. So, the graph G is given and then a number k is given and the question is that what is the 

number of colourings of G using k-colours.  

For each k you can find this and for general k you can write it as a function.  We can say this 

is a colouring function. If you assume k to be a variable or  replace it by x. So, then I will get 

the chromatic function of the graph. Eventually one can show that this function is always a 

polynomial and therefore, its chromatic polynomial. It is a nice exercise using some of the 



techniques that we learned but let us not go into that. So, given a graph, we want to find out 

the number of proper colourings using exactly k-colours.  
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Now, my claim is that this parameter 𝜒(𝐺, 𝑘) satisfies the following identity. So, given a graph 

G and any edge e in the graph, we will assume that all the graphs are simple for the time being, 

even otherwise many of these hold but we will not work with that assumption. So, given a 

graph G and an arbitrary edge e, then 𝜒(𝐺, 𝑘) = 𝜒(𝐺\𝑒 , 𝑘) − 𝜒(𝐺 ∕ 𝑒, 𝑘) 

Similarly, for any graph. So, I want you to think about this and try to prove his identity as well.  

 If you think about what is the proper colouring and what exactly happens when you take the 

contraction or edge deletion, you can immediately come up with this identity, it is not a difficult 

thing, just think about what is meant by proper colouring and what happens in G contraction e 

and what happens in G\e.  

What is the difference between these two graphs and what is the similarity between these two. 

This will allow you to give a proof for this. So, I think that is all we have for today. And we 

will look at a few more things in the next class and then we will go to some other topics for 

this course. 

 

 


