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So, we continue with our lectures on graph theory. Today, we are going to discuss what is 

called acyclic graphs in the first part. So, what is an acyclic graph? As the name suggests, a 

graph that does not contain any cycles. So, they are called acyclic graphs or a more commonly 

used word is Forest. So, acyclic graphs are called Forest. Now, here is an example of a forest. 

If you look at this, you can see this graph represented below does not have any cycles in it. So, 

all the components of a forest are called trees.  

So, components are the maximal connected subgraphs, if you remember. So, you can see that 

there is this component, then there are these two single vertices called 17 and 16 are 

components. Then there is this path on three vertices which is another component and then you 

have a vertex with several neighbours, this is another component and then there is a path with 

four vertices. So, these are all examples of trees and then together form an acyclic graph which 

we call it as Forest. So, here we have a forest.  

Now, there is a special name for this type of graph where we have one central vertex and every 

other vertex is the neighbour. Such a tree is called a star and stars are also some important 

classes of trees that we will see in some time. Now, so, this is an example of acyclic graph.  
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Now, here is one theorem. Suppose, you are given an acyclic graph let us say F and assume 

that this forest has at least 1 edge and you can have isolated vertices but apart from that if you 

have this graph with at least one edge, then this forest has at least two vertices of edge exactly 

equal to 1. So, the vertices of degree 1 are called leaves. So, in a tree if you have a vertex of 

degree 1, they are called leaves of the tree.  

So, how do you prove this theorem? So, you want to show that given an acyclic graph with at 

least 1 edge, it contains at least two vertices of degree exactly equal to 1. Now, here you should 

think about this for a few minutes, it is very easy to come up with a proof but there are several 

ways to do this, but here is one. So, we already looked at this kind of external questions. So, 

take any non-trivial component of the forest and then, consider a maximum length path in that.  

 So, given any graph, what you do is that you look at the longest path in this graph and then we 

will look at the endpoints of this, say, u and v. So, we have this path uv which is the maximum 

length path in one of the components. Any component that you are taking and then look the 

end vertices u and v. We are looking at non-trivial components so, there is at least one edge.  

Now, what can we say about the degree of u? So, I claim that the degree of u cannot be more 

than 1, I mean it has to be exactly equal to 1. So, why is this? So, if you look at the vertex u, 

suppose it has any other neighbour. If it is any other neighbour, let us say u′, the vertex u′ cannot 

be outside the path because if it is outside the path, we can get a longer path by starting from 

u′ to u and then continuing on the path.  

So, this will give me a longer path, but we started with the maximum length path. So, therefore, 

u cannot have any other neighbours, I mean outside the path. Now, if it has a neighbour inside 



the path, then what does it say? Suppose, this neighbour of u is inside the path, then you have 

some neighbour in the path. Then you already have the connection between these two vertices 

along the path u-v and then, you have an additional edge which creates a cycle but we started 

with the assumption that the graph is acyclic.  

So, therefore this is also not possible which says that the vertex u must have a degree exactly 

equal to 1. Now, the same argument was for v. So, therefore, u and v must be vertices of degree 

equal to 1. So, this is true for any maximal paths. So, therefore, we can show that, any non-

trivial forest contains at least two vertices of degree exactly equal to 1. We prove it for just a 

single tree, any non-trivial tree. So, if there are several components, then you can say that there 

are several leaves in the tree.  
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So, here is the proof. Let F be an acyclic graph and T be a non-trivial component. Now, consider 

the path of the maximum length in T, where P = 𝑢1𝑢2 … 𝑢𝑘. Where every neighbour of 𝑢1 it is 

mentioned and of course 𝑢𝑘 also lies on the path P, because otherwise, we said that there is a 

longer path. If there is a neighbour which is other than the immediate neighbour in the path, 

then there is going to be a cycle. So, therefore, the graph is acyclic. Therefore, the vertices have 

degree 1 because the graph is acyclic.  
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Now, here are some here is a homework question. Show that the following are equivalent. Well, 

this is a very important result in the study of acyclic graphs. So, these are the statements. The 

first statement is that T is a tree. So, given a graph T, the graph T is a tree that is equal to the 

statement that there is a unique path between any two vertices of graph T and they are also 

equal to saying that T is a connected graph but T\e is not connected for any edge e in the graph. 

For every edge, T\e is disconnected, but T itself is connected.  

So, in this sense we can say T is minimally connected. So, if the graph is minimally connected 

then it must be a tree and the graph T is acyclic, there is no cycle but if you have any edge 

which was not present. So, suppose u and v are not adjacent, you have an edge u to v, then it 

creates a cycle in the graph T.  

If this is true for every non-edge u and v, so if uv is non-edge, you have to say it creates a cycle. 

If that is true for every non-edge, then we say that is also a tree. So, these are all equivalent. 

So, we have to show that let us say something like,1 implies 2 implies 3 implies 4 implies 1. 

So, whichever way you want you can show this. But show that these statements are equivalent.  
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So, the proposition is as follows. A connected graph of order n, the number of vertices is n is a 

tree if and only if it has n - 1 edges. So, we are given that like the graph is connected which 

means that any two vertices there is a path connecting them and it has exactly n - 1 edges. Now, 

suppose we have a tree, so we have to show two things. Suppose that the given graph is a tree, 

then we have to show it has exactly n - 1 edges and we have to show that if a connected graph 

has exactly n - 1 edges, then it is acyclic. 

So, here is the proof. So, let us first show that if the graph is a tree, then it has exactly n - 1 

edge. So, because it is a tree of course we know that it is connected. Now, let us take an n 

vertices in this graph without any edges and then add edges one by one. Now, what happens 



when I add an edge? When I add an edge, if I take two distinct components, two different 

components which are not connected by an edge and put an edge between them. 

If I take any vertex here and any vertex here and then connect them with an edge, then what 

happens that this entire thing becomes a component because in this component, I can go from 

any vertex to any other vertex because there is a path by definition and similarly, from this 

vertex let us say this is x and y, then from y to any other vertex in this component. Now, to find 

a path from any vertex to any vertex in this big part, all I have to do is that take a path from the 

starting vertex to let us say u, then take the path from u to x and x to y and from y to any other 

vertex that we have here. So, this should give us a path between any two vertices.  

So, therefore, if I take two distinct components and put an edge between some vertices of these 

two, then I will get a larger component. So, this is so, it says that if I add an edge between two 

distinct components, the number of components decreases by exactly one. And of course, it 

cannot decrease by more than one because an edge only can connect two components.  

So, if I start with n vertices, then when I add one edge, it can reduce the number of components 

by one. So, I start with exactly how many components? n components. Then I add one edge, it 

decreases the component by 1. Then I add one more edge, it decreases the components again 

by one, if  I am connecting two distinct components. Now, if I add an edge between the vertices 

of a component, it will not decrease the number of components, but it will create a cycle. So, 

for the time being let us not add such an edge and let us say that we just keep on increasing the 

edges so that the number of components decreases.  

Now, if I do this to minimise the number of components, then because I start with n 

components, I need to add at least n - 1 edges to make the graph connected. So, every time I 

add an edge, it only decreases the number of components by one. So, start with the n then n - 

1, n - 2 etcetera. If it becomes one, then I have added at least n - 1 edges. So, before adding n - 

1 edges, we cannot make the graph connected. So, we need to have at least n - 1 edges. Now 

can we have more than n -1 edges?  

So, at least n - 1 edges are required to make the graph connected. But suppose, you add one 

more edge so, if the graph is already connected and then you add edge between vertices of 

some component, then you will automatically create a cycle because there are two disjoint 

paths between these vertices: the edge and the path in the component.  



So, that is not there. So, we see that if the graph is a tree, which means that connected and 

acyclic, then it has exactly n - 1 edges because it cannot have more than n - 1 edges because 

once it becomes connected, you cannot add any more edges and to become connected, you can 

make it more precise if you want.  
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Now, here is another observation, that is, something that we defined earlier but we can define 

in a different way. So, we defined a rooted tree in the earlier phase when we look at the 

functional digraphs, we defined rooted trees are trees where there is exactly one cyclic vertex. 

So, those were called the roots and then we have that rooted tree as this functional digraph. 

Now, we can also view rooted tree by the following.  

We have our undirected graph and you just make one of the vertices as special vertices and call 

it a root, that becomes a rooted tree. So, this is the natural or the first way that I think you can 

go for the definition of rooted trees because you take a tree and then consider one of the starting 

vertex or initial vertex as special vertex which we call root.  

So, you take any arbitrary tree, pick any vertex and make it a special vertex and say that this is 

a root. So, that becomes a rooted tree. We can start from a vertex and pick any of the vertices 

to make roots. So, this graph that we get this is the rooted tree where this vertex is special and 

in fact, I take this same graph and make this as special and then I get another rooted tree.  

Now, there is a one-to-one correspondence between the rooted trees that we come up like this 

and a functional digraph which is rooted because we observe that in the functional digraph, if 

you have a cyclic vertex, then every path from other vertices must lead to this vertex. It should 



all be coming into this because this vertex already has an out degree right. So, it cannot have 

any other outgoing edges. So, therefore, every edge to it must be incoming.  

Now, because of this, this vertex’s neighbours must also be incoming edges. So, we can follow 

this argument and show that once you fix a root, then all the path must converge to this cyclic 

vertex or that. So, that is how we get the functional digraph. So, that rooted tree is exactly, if 

you are into this because all you are doing is that, whatever is once you have finished the root 

every path converges basically from every leaf, you go find a path to this vertex which is 

directed path.  

So, because that is a unique way to do it, we see that there is bijection between these two. So 

therefore, we can now call any of these as rooted tree without worrying about which definition 

it comes from. And we can use it as it is and we can go from one to the other and this. So, this 

is a simple observation.  
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Now, what are the main questions that we are interested in Combinatorics is of course counting 

questions. So, here are some natural counting questions that arises, of course, there are many 

more I just mentioned a few. So, one question is that what can we say about the number of 

trees on the vertex set V, let us say. So, given a vertex set V= {𝑣1, … , 𝑣𝑛}, how many distinct 

trees you can make on this. Now, the number of trees, let us say that where each vertex degree 

is now specified, let us say 𝑣𝑖 have a degree exactly 𝑑𝑖. 

Now in this case, can we count the number of trees? Or if you say that the number of non-

isomorphic trees on n vertices because when you have labelled a tree, there will be isomorphism 



between the corresponding trees, some of them. So, if there are isomorphism, when we do not 

want to count all of them, we want to guess how many trees are there which are equivalent 

under the isomorphism. I mean, distinct under the isomorphism. So, how many classes are there 

under this equivalence relation of isomorphism? So, that is another question one can think 

about.  
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You can ask number of rooted trees, number of acyclic graphs. All these we can ask about just 

the acyclic graphs. So, these are all questions, some of these we will try to tackle now and some 

of these we try to work out when we look at further topics like or things like that we may find 

the easier way to do this. But we will look at a couple of things at the moment.  
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Now, here is one of the questions. So, what was this question that number of trees with degree 

of 𝑣𝑖 is equal to 𝑑𝑖. So, here is a theorem which explains or counts this. So, number of trees on 

the vertex set V, where degree of 𝑑(𝑣𝑖) = 𝑑𝑖 is given by 
(𝑛−2)!

(𝑑1−1)! (𝑑2−1)! … (𝑑𝑛−1)!
 

Where ∑ 𝑑𝑖 = 2 |𝐸| = 2𝑛 − 2, because the tree has exactly n - 1 edges.  So, now how do you 

prove this?  
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So, here is the proof. What we are going to do is to use induction on n. So, the base case, n = 1 

is trivial because there is no edge, there is one tree and that is it. I can say that the formula holds 

and for n = 2 again there is a unique tree. What is the unique tree? The single edge, that is a 

tree and this happens when 𝑑1 = 𝑑2 = 1  and in other cases 𝑑1 = 2 𝑎𝑛𝑑 𝑑2 = 0 we can see 

that there is no tree.  

Something that you can immediately see. So, therefore, again we can say that the formula holds 

what just verified it. So, once you have the base cases, let us assume that n is strictly greater 

than 2 and now suppose the result holds if the number of vertices is less than or equal to n - 1. 

So, if the number of vertices is strictly less, then it holds. Now what we will do is that we take 

the set of trees on the vertex set 𝑣1 to 𝑣𝑛 with the 𝑑(𝑣𝑖) = 𝑑𝑖.  

So, consider that and call it as X. So, we can observe that di cannot be 0 for any i. Because we 

are talking about trees and because they are connected, this is one way to look at this. We 

cannot create any tree if  𝑑𝑖 = 0, for some 𝑣𝑖 because it cannot be connected, as far as we are 

not looking at the trivial tree where n = 1, we are assuming that n is strictly greater than 2.  

So therefore, we can think of this and say that now,  𝑑𝑖 cannot be 0, because the graph is 

disconnected, so this is no tree possible. So, if 𝑑𝑖 = 0,, we will see that like in this formula we 

will get the (𝑑𝑖 − 1)!, that becomes problem in our definition that does not make sense. So, 

that is not possible. So, therefore, 𝑑𝑖 = 0 is ruled out.  
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So, suppose 𝑑𝑗 = 1, for some j. This we can always assume. Why? Because, suppose every 𝑑𝑖 

was greater than or equal to 2, then we have n 𝑑𝑖’s so, therefore, the sum is going to be greater 

than 2n - 2. If every vertex has degree at least 2, there are n vertices, total degree will be more 

than 2n. So, therefore, we know that since 𝑑𝑖 is non-zero, it must be equal to 1 for some vertex 

so that is why 𝑑𝑗 is the vertex whose degree is 1, that is at least 1. So, let us fix this particular 

vertex 𝑣𝑗  whose degree is going to be 1.   

Now, what we notice is that, by the definition of the way we construct this 𝑑(𝑣𝑖) = 𝑑𝑖 , for all 

the graphs in X. So, it means that, for the graph that we are going to consider in X, the degree 

of 𝑣𝑗  is going to be always 1. So, 𝑣𝑗  is going to be a leaf in all the trees in X. So, what we can 

see is that in all the trees that we are considering, 𝑣𝑗  is always going to be a leave. It means that 

it has exactly one edge. Now, we collect these neighbours and then make another set like this. 

For every tree in A, let 𝐴𝑘   is the set of all trees such that 𝑣𝑗𝑣𝑘  is an edge in the tree. Because 

𝑣𝑗  has a unique neighbour. It is going to be exactly one 𝑣𝑘 for a given tree. So, that k it will be 

different from j because there is no loop in trees. So therefore, for every k’s, we can consider 

the possible case. So, 𝐴𝑘   basically the set of all trees such that 𝑣𝑗𝑣𝑘 is in the edge of T. So, 

we are now collecting with the index of the neighbour of this particular vertex 𝑣𝑗  that could be 

different in different trees.  

But of course, the degree of 𝑣𝑗  is actually equal to 1 but the neighbours could be different in 

each of the different trees. Now, because this 𝐴𝑘   must cover all of A in at least some of these 

cases, A is going to be disjoint union 𝐴𝑘   and this is disjoint union because you cannot have 



two different k intersecting. There is a precisely unique neighbour for 𝑣𝑗 . So, therefore we get 

a disjoint union of 𝐴𝑘  which is equal to A. Now, let us pick some k which is different from j.  

So, what we do is that we are going to delete this single degree vertex which is a leaf 𝑣𝑗  . Once 

I delete the vertex 𝑣𝑗 , what happens? Because it is a leaf, it is not connected to anything other 

than its unique neighbour, and every path from this vertex (because the tree is connected) to 

every other vertex is actually going through this neighbour. So, if I remove this particular leaf, 

the remaining graph is still going to be connected, it is something that you can immediately see 

from the structure of a tree, if you remove the leaves, it does not affect the connectivity of the 

remaining part.  
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So therefore, we are going to get trees on the vertex at V \ 𝑣𝑗  =  𝑣1, … 𝑣𝑗−1, 𝑣𝑗+1, … , 𝑣𝑛. So, on 

n - 1 vertices, we get trees which are again connected and what is the property of the trees that 

we are proving this way? For all the trees, 𝑑(𝑣𝑖) = 𝑑𝑖 because we have not changed the degree 

of anything except for 𝑣𝑘. So, for i ≠ k, 𝑑(𝑣𝑖) = 𝑑𝑖 .  

Now once you observe this, what happens to degree of 𝑣𝑘? Degree of 𝑣𝑘 reduces exactly by 1, 

because we just removed one of its neighbours. So, it is going to be 𝑑𝑘 − 1. Now, we can see 

that there is a bijection between the trees 𝐴𝑘  that we are looking at and the set of trees that we  

obtained here, by deleting this. Because we precisely have the same thing here except, we 

removed one leaf and if you have anything here with this degree sequence, we can also add a 

leaf make it adjacent to one of the vertices and then we will get a tree in A. So, it must be 

present in one of the 𝐴𝑗   .  



So, therefore, there is one-to-one correspondence so, the cardinality of 𝐴𝑘   is precisely the 

cardinality of the trees that we obtain this way. Now the trees that we obtained this way is all 

trees that we can get where the degree sequence is given here, all trees on n -1 vertices where 

the degree sequence is given here, here 𝑑(𝑣𝑖) =  𝑑𝑖 , 𝑖 ≠ 𝑘  and 𝑑(𝑣𝑘) = 𝑑𝑘 − 1 So, now we 

can use induction. So, what is the induction?  

 

   |𝐴𝑘| =  
(𝑛−3)!

(𝑑𝑘−2)! ∏ (𝑑𝑖−1)!𝑖≠𝑘,𝑗   
  , multiply 𝑑𝑘 − 1  above and below. 

         =   
(𝑛−3)!(𝑑𝑘−1)

∏ (𝑑𝑖−1)!𝑖≠𝑗   
 

Now, here is something that we should observe that so, i not equal j, there is one term still 

missing from our general formula, but what is that term? That term is  (𝑑𝑗 − 1)!. But we know 

that 𝑑𝑗 = 1 . So,   (𝑑𝑗 − 1)! = 0! = 1.  

So, I can also put that thing here, it does not make any difference because 𝑑𝑗 is 1. So, then I 

can write it as ∏ (𝑑𝑖 − 1)!𝑖  because it does not matter whether I add that particular case of 𝑑𝑗. 

So, therefore, I will get this without i not equal to j.  
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Now, so, what is the cardinality of A? Well, it is a sum over all k different from j, cardinality 

of 𝐴𝑘  , by definition here right. It is the union over all k, 𝐴𝑘.  

 

|𝐴| =  ∑|𝐴𝑘|

𝑘≠𝑗

=  ∑   
(𝑛 − 3)! (𝑑𝑘 − 1)

∏ (𝑑𝑖 − 1)!𝑖≠𝑗   
  

𝑘≠𝑗 

 

                                                 =  ∑   
(𝑛−3)!(𝑑𝑘−1)

∏ (𝑑𝑖−1)!𝑖   𝑘≠𝑗 , since (𝑑𝑗 − 1)! = 1 

                                                         =
(𝑛−3)!

∏ (𝑑𝑖−1)!𝑖   
 ∑ (𝑑𝑘 − 1)!𝑘≠𝑗   

 

                                                       =
(𝑛−2)!

∏ (𝑑𝑖−1)!𝑖   
 , since ∑ (𝑑𝑘 − 1)!𝑘≠𝑗 = 𝑛 − 2 

 

 

So, we have proved that. Now, since we have this we can use this to find the number of all the 

trees on {𝑣1, … , 𝑣𝑛}. Because for each degree sequence now we know how to find it so, you 

can sum all this thing again.  
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So, that is a homework for you. Show that the total number of trees on {𝑣1, … , 𝑣𝑛} is 𝑛𝑛−2 by 

using the above result, that for a given degree sequence we have 
(𝑛−2)!

∏ (𝑑𝑖−1)!𝑖   
. So, that sum should 

be equal to 𝑛𝑛−2. So, show this by using the previous result. Now, again once we have this, we 

can immediately show that the number of rooted trees is on the vertex set 1 to n is 𝑛𝑛−1 and 

this is also the immediate consequence once you have it, this is easy.  

 

 


