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So finally we are going to prove a famous and beautiful theorem. And the proof is very nice. 

You will enjoy it, which is the Euler’s pentagonal number theorem. We are going to use 

generating functions to prove this. There are several proofs but this one is in particular very 

beautiful. 
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We start with something that we have already seen, the generating function for integer 

partitions. We proved that it is , ∏
1

1−𝑥𝑖
∞
𝑖=1   . Now let us define DP to be the set of integer 

partitions whose parts are all distinct. 

So each part must be distinct. I do not want a partition of integer. So if I am looking at the 

partition of, let us say, partition of 10, I can write it as (4, 4, 2) but this is not allowed to be in 

DP because the parts are not distinct. So I do not want such partitions. I want to avoid these 

kind of things where parts are repeated. 
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On the other hand, (4,3,2,1) is a partition where the parts are distinct, therefore this is allowed. 

We want to look at the set of all integer partitions where the parts are distinct for any i. So 

therefore, look at all possible integers, for each of them look at the set of partitions and in which 

the parts are distinct and collect them together. So that is the set DP. 
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Now we want to look at the generating function for DP. So let us see what is this. First we 

observe that for each number i, when we are deciding the partition, what, as we did in the case 

of 10 for example, write each number 1, 2, 3, 4, 5 etcetera, we have a choice whether we want 

to add i into the partition 𝜇 exactly once or not to add it. So for every i we have a choice either 

add it once or not at all. Then that is okay. 

But if I add I can only add it once. Now as we just noticed this choice is given by the generating 

function 1 + 𝑥𝑖 because if I choose i, I say that I have chosen i to be in the partition. And if I 

choose 1, then I say that i is not in the partition. 

So then if you look at the product ∏ (1 + 𝑥𝑖),∞
𝑖=1  that tells that I am choosing either exactly one 

copy of i for any integer, I am going to choose it either exactly once or nothing. And therefore 



this is the generating function for DP(x), that is something very clear to us. Now that we can 

get by product formula. 

But on the other hand, what is DP(x) by the definition of DP? DP says that DP is the set of all 

partitions where each part is distinct. Now because of this how do I get the generating function? 

So because each part is distinct and I sum over all the elements in DP, so what number it is 

representing. So if the partition is representing, let us say, n the partition of n, then 𝑥𝑛 is what 

we want to say. 

So because we want to find the coefficient of 𝑥𝑛 to count exactly the partitions of n which 

belongs to DP, and another way to say that it is ∑ 𝑥|𝜇|
𝜇∈𝐷𝑃  . So whenever the size of 𝜇 is n we 

will look at the partitions 𝜇 which belongs to DP and how many are there, that is precisely the 

number of such partitions. 

So therefore this is the definition of DP(x), in another way. So we know that 𝐷𝑃(𝑥) =

∑ 𝑥|𝜇|
𝜇∈𝐷𝑃  =  ∏ (1 + 𝑥𝑖) .∞

𝑖=1  So we got the generating function for DP. Now, so we started 

with the generating function for the integer partition which is 
1

1+𝑥𝑖  . 
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So there is some kind of similarity between these two things, especially if I, instead of looking 

at 
1

1−𝑥𝑖, suppose I look at the product of the reciprocals (1 − 𝑥𝑖). So if I look at ∏ (1 − 𝑥𝑖)∞
𝑖=1 ,  

it is just the reciprocals in the generating function of the partitions of an integers. 

Then it is very closely related to ∏ (1 + 𝑥𝑖)∞
𝑖=1  because I am just replacing x with  -x. Because 

of this similarity I am doing this. And, the fact that the Euler’s pentagonal theorem is about the 

expansion of this product. What will be the terms in the expansion, that is what the theorem is 

about. 

So let us now look at this product which is very much related to the both, in two different ways,  

this product is related to the distinct parts generating function by changing x to -x and also 

related to the partition for integers as reciprocals of the factors. So therefore this is related to 

both, and we are going to use this relation. 
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Now, suppose we are given a partition of some number, say 𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑠). So that are 

exactly s parts. So the length of 𝑙(𝜇) = 𝑠. So if you recall when we studied integer partition, 

we said that length of the partition denoted 𝑙(𝜇) is the number of parts. So given a partition 

𝜇 = (𝜇1, 𝜇2, … , 𝜇𝑠) the length of 𝜇 is precisely s. 

By definition,  ∏ (1 + 𝑥𝑖) =  ∑ 𝑥|𝜇|
𝜇∈𝐷𝑃

∞
𝑖=1   . 

 Now when I change the sign of x to -x, then what happens? 

It is not changing x to -x, sorry, it is changing the sign from (1 + 𝑥𝑖) to (1 − 𝑥𝑖) . So I have, 

∏ (1 − 𝑥𝑖)∞
𝑖=1 . So how can I represent this in terms of the summation that we have? I claim 

that,  ∏ (1 − 𝑥𝑖) =  ∑ (−1)𝑙(𝜇)𝑥|𝜇|
𝜇∈𝐷𝑃 

∞
𝑖=1  

Now can you think why this is precisely the case?  Let us say 𝜇 is the partition of n, then if you 

are looking at 𝑥𝑛, how do I get the term 𝑥𝑛? So 𝑥𝑛 comes from the partition 𝜇, and the partition 

𝜇 is let us say (𝜇1, … , 𝜇𝑠). Now how did this , 𝑥|𝜇| , 𝑥𝑛 came about? 

Well it came about because in the product on the left side we have (1 − 𝑥𝑖). And what is 

(1 − 𝑥𝑖) saying? That I am choosing (−𝑥𝑖) if whenever I am choosing i. So when I choose 

𝜇1, I am basically choosing minus of x raised to size of mu 1. Similarly, for every i I am 

choosing  −𝑥|𝜇𝑖|    . 

 And then the size of 𝜇𝑖 ’𝑠 add up to n, then we get 𝜇. If there are odd number of negative terms  

then the product is odd, and otherwise it is even. So therefore if I look at (−1)𝑙(𝜇) it accounts 

for the sign, my length of 𝜇 is odd then I will get negative, and length of 𝜇 is even I will get 

positive term. 

So that explains why the ∏ (1 − 𝑥𝑖) =  ∑ (−1)𝑙(𝜇)𝑥|𝜇|
𝜇∈𝐷𝑃 

∞
𝑖=1  
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Now we are going to use some trick. We have learned about involutions earlier. So given a 

partition 𝜇 = (𝜇1, 𝜇2, . . ., 𝜇𝑠), of course, we will assume that 𝜇1 >   𝜇2 >  . . . >  𝜇𝑠),  because 

in a partition we order them according to the size and since the parts are distinct we know that 

it is never an equality.  

So 𝜇 is in the distinct parts. Let us say that the largest index a,  for which 𝜇1, 𝜇2, . . ., 𝜇𝑎,  are 

consecutive numbers. So let us say that 𝜇1 and 𝜇2 are such that 𝜇2 is exactly 𝜇1 −  1, 𝜇3 is 

exactly 𝜇2 −  1, etcetera, up to, let us say, a. 

So we are looking at these specific type of partitions, not specific type of partition we are 

looking at the partition then deciding up to which number we can have this consecutive 

numbers. So let us see. 



(Refer Slide Time: 13:50) 

 

 

Here is an example. A partition, the ferrous diagram. If you look at this you will see that here 

I have 1, 2, 3, 4, 5, 6, 7, 8, the first line, there is 8. So if the partition with the first term is 8, 𝜇1 

is 8, then we have 7, which is 𝜇2, then we have 6, which is 𝜇3, but then 𝜇4 is 4, it is not 

consecutive. So 8, 7, 6 is consecutive but the next one is not. So therefore my a is now 3. 

So this is how I, I choose a. So a is the largest index for which 𝜇1, 𝜇2, … , 𝜇𝑎 are consecutive 

numbers. Then we define b to be, b is equal to 𝜇𝑠, which is the smallest part of 𝜇, the last part 

is b. So in this case what is last part? Last part is 1, 2, 3, 4. So last part is b. 

So given any partition in DP we know that 𝜇1 >  𝜇2 >  … >  𝜇𝑠  and  we have a non-zero index 

because 𝜇1 is always there so a is at least 1, so it will be between 1 and s. And therefore it is 



well defined, and we have a and we have b, b is the last part, so therefore a and b are well 

defined. 

Now we are going to define an involution which takes partitions to partitions. So I am going to 

transform the partitions by defining an involution. So if a is less than b, so we have defined a 

and b, if a is strictly less than b, then I define the involution  𝐼(𝜇1, 𝜇2, … , 𝜇𝑠) = (𝜇1 − 1, 𝜇2 −

1, … , 𝜇𝑎 − 1, 𝜇𝑎+1, … , 𝜇𝑠, 𝜇𝑠+1 = 𝑎). 

 I include a new part, the number of parts is now increasing, and I am adding 𝜇𝑠+1 = 𝑎 . So 

because a is strictly less than b, we know that this is definitely a partition of 𝜇, again. So, the 

involution does not affect the total. So it keeps the size of the partition or area of the shape of 

the figure. The area is fixed because I am just rearranging the cells. 

And we know that when I subtract, these numbers will never be larger than 𝜇𝑎. So therefore, 

this will be still a non-increasing sequence. So therefore I have defined a partition by doing 

this. So  𝐼(𝜇) is another partition. So 𝐼(𝜇) is obtained by decreasing the first eight parts in 𝜇 

and by adding the part with size a to the last part of 𝜇. 
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So here is the pictorial representation of the same. I start with this partition where I have these 

numbers, and a and b are here, a is less than b because a is 3 and b is 4. So therefore I put this 

a, the three elements, I am moving them from there, I have reduced the numbers from here, 

then putting at the last part, which is b, below the b that we have. 

And now for this, again now we can look at what is a and b. So if you look at the a and b you 

will see that b is now 3, a is 1, 2, 3, 4 and 5. So therefore now a is larger than b. So we will 

define the involution for that also, and  we define in such a way that its involution will be the 

original image itself. And similarly here is another example we have a and b, where this a is 

reaching here, I again put it here I get another map, so I have, I have the involution of the first 

figure. 
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So the, what is the other case? If a is greater than or equal to b, then, 𝐼 takes 𝜇 to (𝜇1 + 1, 𝜇2 +

1, … , 𝜇𝑏 + 1, 𝜇𝑏+1 , … , 𝜇𝑎, … , 𝜇𝑠−1) 

That is 𝐼(𝜇) is obtained by removing the last part of 𝜇 and increasing the first b parts by 1. 

Since a is greater than or equal to b, I have the leverage to do this. So I add these parts and I 

get the involution. So 𝐼(𝜇) is obtained by removing the last part of 𝜇 and increasing the first b 

parts by 1. 

Now the claim is that I is an involution because 𝐼 (𝐼(𝜇)) = 𝜇. And this is something we can 

verify. It preserves the area because we do not remove any of the cells. We are just moving 

around the cells. So the total is going to be the same. But on the other hand it is sign reversing 

in DP. 



Why is it sign reversing? Because if you are going to get distinct parts in the new 𝜇, if the new 

partition, that 𝐼(𝜇) is having distinct parts, then the number of parts has changed by 1. So the 

length of 𝜇 is changing now. The length of 𝜇 and length of 𝐼(𝜇) differs exactly by 1. 

So in this summation the coefficient (−1)𝑙(𝜇)  , that sign has changed for this particular 

partition. So it basically is a map from partitions to partitions, where for the first partition and 

second partition, if both of them are in D P then the sign of them are opposite. And they are 

they are different partitions, and the signs are different. 

So if I can match up this, those terms will cancel out in the summation. So if I am looking at 

the summation here, the corresponding terms will cancel out which means that in this product, 

the product is basically the expansion of the product is precisely the way we are obtained here, 

so we need to figure out which terms are going to cancel out in this product. And that is what 

our aim is. 

So we have define this involution and see whether there is any problem with this involution, 

or, if any of the terms are remaining. So there will be some cancellation because whenever 𝜇 

is going to 𝐼(𝜇), and 𝜇 and 𝐼(𝜇) are distinct partitions we know that those two will cancel out 

because they have different signs. The involution is a sign reversing involution. 

So we now observe that, not all involutions of 𝜇 are going to be in DP. So only those in D P 

will be counted by the summation, therefore only those pairs will cancel out. So we need to 

figure out which are the ones which are not counted in D P. 
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So there are two cases. One is that, one is that like, if b is equal to a plus 1, so if exactly a plus 

1 in that case what happens? So b is here, 5 and a is 4, and if b is actually equal to a plus 1, 

when I remove these four parts, the last four cells, and we are going to put it below, below b, 

what happens? I am going to put four cells below b, but now b has decreased by 1, so and 

therefore we have four new parts coming here where these parts have disappeared. 

So we are getting a partition but the last two parts are the same, because this, there is 4 here, b 

becomes b minus 1 and a is also equal to b minus 1. So therefore these two parts are having 

exactly the same size. So same numbers are appearing and therefore it is not in D P.  So 𝐼(𝜇) 

is not in DP for this case. Therefore, this term will not be cancelled. So we can say this is a 

fixed point.  



Now there is another case, then also we have this issue that, that is when b is equal, equal to a. 

So if b is equal to a, then we cannot define 𝐼(𝜇) because the when I take away the a parts, then 

a becomes larger than b - 1, b, we had how many terms, the last part is also removed. 

So therefore if b is equal to a then what happens is that when you remove the last part it becomes 

b -1. I cannot put a below it. So I cannot really define 𝐼(𝜇). So 𝐼(𝜇) is undefined. So therefore 

I can say 𝐼(𝜇) is 𝜇 itself. So this is again a fixed point. So whenever 𝐼(𝜇) does not belong to 

DP we will say 𝐼(𝜇) = 𝜇 . 

So now our involution is now defined well, that whenever we can define 𝐼(𝜇) to be in DP, I 

define 𝐼(𝜇) in the previous, as in the previous example, and these two cases I will define 𝐼(𝜇) 

to be 𝜇 itself. So therefore I have the involution and we know that 𝐼(𝐼(𝜇)) = 𝜇 itself. 
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And once we have this, so here is the written explanation that if 𝑎 = 𝑙(𝜇) and 𝑏 = 𝑎 + 1, then 

as we observed 𝐼(𝜇) is not in DP, and in that case we have to set 𝐼(𝜇) to be 𝜇 itself. And 

similarly if I cannot define this because the length of the part that I am going to add is more 

than the last part in 𝜇  we have to define 𝐼(𝜇) to be 𝜇 itself. 

So, these two terms are fixed points, and all other terms are not fixed, and therefore they will 

cancel out. So when exactly this happens? So when exactly are the fixed points there? And 

fixed points are the only ones going to survive in the product. So therefore, and in the sum. 
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So let us analyze this. So we can see that whenever 𝜇 is of the following form, this will happen. 

Because we want the numbers to be consecutive, so if 𝜇 = (2𝑘, 2𝑘 − 1, … , 𝑘 + 1) and it has 

exactly length k. Then of course what is the area of this?  |𝜇| =
𝑘(3𝑘+1)

2
, 𝑘 ≥ 1, 

Or if 𝜇 = ( 2𝑘 − 1, … , 𝑘 + 1, 𝑘), where again, length k and  |𝜇| =
𝑘(3𝑘+1)

2
, 𝑘 ≥ 1 . In these two 

cases we can verify that case a, and these two previous cases will appear precisely in this case. 

So this is something one can manually verify because we are partitioning a number with this 

property. The, the sizes are now well-defined because here everything must be decreasing, here 

also everything must be decreasing by 1 exactly, consecutive. And these two cases will happen 

precisely when the numbers are either of this form. And area is precisely the sum of the 

numbers, so therefore that is also clear. 

So these are the fixed points one can verify. And then the empty partition of course is also fixed 

point. It is not cancelled, and therefore we can use this information to define the product from 

the summation formula. 
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So what are the terms that is going to survive are precisely when the power of x is either, the 

size is 
𝑛(3𝑛−1)

2
 or 

𝑛(3𝑛+1)

2
. And in this case the sign will be (−1)𝑛 which is the number of terms. 

So n is the number of terms and the area is 
𝑛(3𝑛−1)

2
 or 

𝑛(3𝑛+1)

2
. So 

∏(1 − 𝑥𝑖) = 1 +  ∑ (−1)𝑛 𝑥
𝑛(3𝑛−1)

2 + x 
𝑛(3𝑛+1)

2

∞

𝑛=1

∞

𝑖=1

 

= 1 − 𝑥 − 𝑥2 + 𝑥5 + 𝑥7 − ⋯ 

So these numbers which are appearing in the exponents are called the pentagonal numbers. 

And this result is known as the Euler’s pentagonal number theorem, pentagonal number 

theorem.  

And this is a very nice and well-known result, something comes a lot in mathematics, and very 

beautiful result. And we have a very elegant proof of that. And I think with this application we 

can conclude our visit to generating functions. And there are more techniques one can learn 

but we will keep that for an advanced course. And here I will leave you with some few exercise 

questions which you can try out. 
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So the questions include, the first one is let ℎ𝑛 be the number of compositions of n into parts 

where each part is either 1 or 2. If ℎ0 =  1, and 𝐻(𝑥) = ∑ ℎ𝑛𝑥𝑛
𝑛≥0  is the generating function, 

find out ℎ𝑛. Second question calls to look at the derangements. We know that we have solved 

the derangements using the inclusion-exclusion. So formula for derangements. 

(Refer Slide Time: 33:05) 

 

And we have shown that the formula is 𝑑𝑛 =  ∑
(−1)𝑖𝑛!

𝑖!
 .𝑛

𝑖=0  So this is something that we have 

proved. Now find the exponential generating function for the derangements. Let us say Der(x), 

and try to find it in a closed form. Then find the exponential generating function for the bell 

numbers that we have discussed in, when we were looking at the partitions. 
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And finally, here is another interesting, very interesting question. Suppose, you are all familiar 

with the, the dice, the six-faced dice with the numbers, the dots 1, 2, up to, let us say, 6. So 

there are the 6 faces. Each face has distinct number of dots 1 to 6. Now let us say that this dice 

is picked up and rolled. So there are two of them. So I rolled them. Now the outcome of a roll 

is basically the sum of the numbers on the top. So take the numbers on the top, or number of 

dots on the top, count them. 

Now because it is 1 to 6, sum of these two will be ranging from 2 to 12. when 1, 1 is happening 

it is 2, 3 and 4, or 5 and 2 are happening, or 6 and 1 are happening, you will get 7, etcetera up, 

to 12 is possible. And, and these are the only outcomes that we can have from this rolling. Now  

what we want to do is to use generating functions. So find the generating function for counting 

the number of ways, the sum 2 to 12 can occur. So whenever 12 is happening, the coefficient 

of 𝑥12 must be the number of ways that can appear. 



Now use the generating function and try to play with it, and show that there is another unique 

pair of dice that we can come up with. So the two dice, but the numbers are going to be different. 

Not 1 to 6, it will have some other numbers. So can you show that there is another set of six-

faced dice where the numbers of the sides are slightly different from 1 to 6, but with the same 

outcomes, with the same probability, that the number of ways each outcome, the number 12 or 

5 or 3 or 2 comes, is the same. 

So this type of dice have a special name. That is something we can find out later. So try to 

solve this. This is a nice question. It might take a little bit of work but it will be worth the 

exercise. So with that we conclude this introduction to generating functions. And we will see 

more about it in advanced courses. So with that I wind up, and we will continue with a different 

topic in the next lecture. 

 


