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We will take a very quick review of partially ordered sets just in case some of you are not familiar 

with partially ordered sets or not come across these definitions and properties. So, this will be very 

quick, we will not spend too much time on this, because, this is not part of what we are studying 

in this course, but something that is required to see some of the results or understand some of the 

results. 

So, what is a partially ordered set, a partially ordered set 𝑃 is a set. Now, the set, is also denoted 

𝑃, it is an abuse of notation, but, it is clear from the context. So, therefore, we do not worry about 

that. So, we will represent the same set which is the base set and as well as the structure Poset both 

with the same letter 𝑃.  

So, the Poset 𝑃 is a set together with a binary relation denote that less than or equal to in our most 

cases or sometimes you can use other symbols does not matter, but it will be explicitly mentioned. 

Such that this binary relation is first of all reflexive that is 𝑥 ≤ 𝑥  for every 𝑥 ∈ 𝑃,  for every 

element it is less than or equal to itself. So, it is in relation with itself that is reflexive, then it is 



anti-symmetric. Which means that, if 𝑥 ≤ 𝑦, and 𝑦 ≤ 𝑥 , then it implies 𝑥 = 𝑦. So, I read it as it 

is less than or equal to because of the symbol that we use. 

But, to be more precise, you should just say that 𝑥 is related to 𝑦 and y𝑦is related to 𝑥, but let us 

not worry about that for the time being. And then the third condition is that it must be a transitive, 

no transitive property is there. The relation 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 implies 𝑥 ≤ 𝑧. So, if you have these 

three properties, for the set with relation, then we say that this is a partially ordered set or it is a 

partial order. 

Now, without writing it, let me just mention, when the relation is strict, now when we do not allow 

reflexivity, then the relation is strict, it is a strict partial order and we will not look at strict partial 

order in this course. 
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So, let us see an example. So, take the set of integers 1 to 8; 1, 2, 3, 4, 5, 6, 7, 8. And then for the 

relation, I look at the divisibility relation. So, 𝑎|𝑏, if 𝑏 is divisible by 𝑎. So, this symbol  ‘ | ‘ is 

used for the divisibility for 𝑎 and 𝑏 in 𝑋. Then, 𝑋 with the relation divisibility is a poset. So, you 

can see that for example 2 divides 4 ( 2|4 ), 3|6 and 2 does not divide 5. So, 2 and 5 are not related 

3 does not divide 7, 1 divides 2, 2 divides 4, and 4 divides 8 and by transitivity 1 divides 4, 2 

divides 8, 1 divides 8 etcetera. Then 1 divides 5 and 1 divides 7. 

So, this is a poset you can verify that reflexivity is true, that 1 is less than or equal to 5,  1 divides 

5, 2 device 2 etcetera, every element divides itself and anti-symmetric. So, if 2 divides something 



and something divides 2, then there must be the same. So, that you can see verify that any element 

dividing another element and that dividing this it means that there must be the same. So, you can 

verify all the three properties and then see that this is actually a partially ordered set. 
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Now, another example this is a very important example that you will come to see visit many times. 

So, let 𝑋 be some arbitrary set and 𝒫(𝑋) the power set. Now, the subset relation. So, this defines 

a partial order on the power set. So, let us take an example 𝑋 is equal to three elements set { 𝑎, 𝑏, 𝑐}. 

Then we know, the empty set for example is a subset. So, empty set is as a subset of { 𝑎 }, {𝑏}, {𝑐} 

etc. 

Similarly, 𝑎 ⊂ {𝑎, 𝑏}, 𝑎 ⊂ {𝑎, 𝑐}, 𝑏 ⊂ {𝑐, 𝑏}, 𝑐 ⊂ {𝑎, 𝑐}. So, all these one can see. Now, I did not 

introduce formally what this picture means. So, we will come to this more formally later, but this 

is basically a kind of graph where you represent the elements of 𝒫 as vertices of a graph and when 

you have two elements where one is contained in the other and there is nothing in between you put 

a line between them and if you have an element that is a subset of or less than or equal to in the 

relation. 

Then, you make sure that the element that is the larger one and containing 1 is above in some 

sense, horizontally above. So, it is formerly we will define a little later, but, it is much easier to 

write down in all the subsets one by one. So, this defines a partially ordered set you can verify that, 



the reflectivity transitivity and anti-symmetric properties hold and now you can generalize to a set 

with 𝑛 elements (𝑋 = [𝑛] ) and power set of 𝑋 , 𝒫(𝑋) = 2[𝑛] elements. 

Now, the usual notation that we will use for this specific power set specific partially ordered set is 

𝐵𝑛. So, 𝐵𝑛 says that you are looking at the 2 raised to n subsets of n elements let us say 1 to n and 

then you are looking at the containment or subset relation as the order relation. So, this is a partially 

ordered set. 
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Now more definitions so, when, when I take any two elements of the poset 𝑃 let us say 𝑥 and 𝑦, if 

𝑥 ≤ 𝑦  or  𝑦 ≤ 𝑥, then we will say 𝑥 and 𝑦 are comparable. So, if you look at the this example, for 

example, 2 and 5 if you take 2 does not divide 5 and 5 does not divide 2. So, therefore, 2 and 5 are 

not really comparable with respect to the division relation. 

And similarly, if you take {𝑎, 𝑏} and {𝑎, 𝑐} here, they are also not comparable, you cannot say one 

is a subset of the other or this is sort of that, so, therefore, they are not comparable. So, when this 

property holds for one of the pairs then we say that they are comparable. Now, suppose you have 

two possess 𝑃 and 𝑄, we will say that 𝑃 and 𝑄 are isomorphic if you can find an order preserving 

bijection, let us say 𝜙: 𝑃 → 𝑄 , whose inverse is also order preserving.  

So, when I say order preserving x is less than or equal to y in P, 𝑥 ≤𝑃 𝑦 So, this says that the 

relation is inside 𝑃. So, 𝑃 and 𝑄 can have different relations. So, therefore, now, 𝜙(𝑥) is an element 



of Q and is less than or equal to 𝜙(𝑦) in Q, 𝜙(𝑥) ≤𝑄  𝜙(𝑦). So, if this relation is if and only if 

then we say this is an isomorphism. And we also want that inverse is also order preserving. Now 

so that is why this if and only if.  

Now, suppose you have a bijection and, you know that it is the bijection is order preserving is it 

necessary that the inverse is also order preserving? Or can you find an example where it is not. So, 

think about this if you find an example, let me know or you write it as a homework. 
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Now, given a poset we can talk about a sub-poset. The sub-poset is a subset of course, and the 

relation 𝑥 ≤𝑄 𝑦  if and only if 𝑥 ≤𝑃 𝑦,  for 𝑥, 𝑦 ∈ 𝑄, for all the elements in 𝑄 which is the subset 

this should be true, then we say that it is a sub-poset. So, there is a there is a weak version of sub-

poset definition where you do not insist this if and only if condition, but we will not go into that. 

So, whenever we say it is a sub-poset we will say that it is a induced sub-poset or now the relation 

is maintained exactly as it is for all the elements within 𝑄. Now for two elements 𝑥 and 𝑦 the 

interval [𝑥, 𝑦] is defined as the set of all elements in the poset 𝑃 such that 𝑧 comes between 𝑥 and 

𝑦, that is [𝑥, 𝑦] = {𝑧 ∈ 𝑃: 𝑥 ≤ 𝑧 ≤ 𝑦 }. So, this set is always non-empty, it will contain at least 𝑥 

and 𝑦 or at least we want the, to define like that. 

And so, the interval is this non-empty set. Now a poset is said to be locally finite if every interval 

is finite. So, the P itself may not be finite, but if you can say that every interval is finite. So, once 



you take fixed two elements x and y, then between x and y the number of elements that appears is 

finite. So, then we say it is locally finite. 
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Now, when you have two elements in the poset let us say x and y, I say that y covers x if first of 

all x strictly less than y and there is no element z such that x is less than z less than y. So, they are 

comparable, because x is less than y, but there is no element in between. So, then we say that it is 

a covering a relation. So, comparability should be there, but there is no element in between then 

we say it is a covering relation. 

So, which means that x is strictly less than y and the interval [𝑥, 𝑦] is precisely the set {𝑥, 𝑦}. Now, 

formal definition of Hasse-diagram is that it is a graph on the vertex set as the elements of  𝑃 with 

the vertices of the elements of  𝑃 and the edges are the covering relations. So, the edges of the 

three other covering relations that is, when you have elements in between you do not. So, even 

though phi is a subset of let us say every set, you do not put an edge like this because there is 

already a set. 

Let us say {𝑎} which comes in between {𝑎, 𝑏} and 𝜙. So, therefore, I only put this edge and then 

the edge connecting this. So, these two together tells me that there is this what you call, the 

comparability but it is not a covering relation. So, I will not put the additional line. Now, we also 

make sure that in the Hasse-diagram when x is strictly less than y,  y is marked above x horizontal. 

So, appears horizontally above the smaller relation. 
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So, example here are two Hasse-diagrams. So, one for the poset that we considered earlier the 

poset which contains the 1 to 8 and the divisibility. So, we saw that 1 divides are 2, 3, 5, 7 they are 

precisely the prime numbers if you observe and then 2 divides 4, 2 covers 4, because there is 

nothing in between 4 divides 8. 2 divides also 6, 3 divides 6 and other elements that not divide any 

other elements. So, we get the complete description of the poset here and the Hasse-diagram. 

So, once you have the Hasse-diagram, you know the poset. So, here is another example you have 

x and y and x is less than t, x is less than z, then y is less than z, and y is less than u, t is less than 

w, z is less and w, t and u are less than v. Now, we say that poset 𝑃 has a  0̂ if  you can find an 

element special element such that 0̂ such that x is greater than or equal to 0̂ for every x. It means 

that this is a kind of minimal element.  

So, if every element is less than, is greater than or equal to this, then it is a 0. Similarly, P is said 

to have a 1, if you can find an element such that every other element is less than or equal to this 

element. And if you have a poset 𝑃, then you can denote by 𝑃̂ as the new poset that you obtained 

by adding an additional 0̂ and 1̂ to 𝑃. So, you add two elements introduce two elements and make 

one as the minimum element that we know it is less than or equal to every other element. 

And then one as greater than or equal to every other. If you do that, then you get a new poset P, 𝑃̂. 

So, even if P originally had a 0, you can still add it, but then the original 0 may not be the 0 

anymore. 
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So, here is an example you start with this poset P. So, the P is the poset. And you can see that a is 

a minimum element because it is less than or equal to every other element, but there is no maximum 

element. I mean, I should not say maximum there is no 1 here because there is no element which 

is larger than every other element. On the other hand, if I take 𝑃̂, I am going to introduce a 0 here 

and also a 1 there and now a is no more the 0. But 0̂ is and similarly 1̂ is a 1. 

Now a chain is a poset where any two elements are comparable. Suppose you take a set of element 

and say that any two are comparable. For example, if you look at the natural numbers, natural 

numbers you know that every element can be less than or equal to the following numbers. So, and 

you know like, you can compare any two of them. So, that is a chain, you can see that so with the 

usual less than or equal to less the natural relation. 

Here is a smaller subset  1, 2, 3, 4, 5. And 1 is less than or equal to 2, 2 less than or equal to 3, 3 

less than or equal to 4, 4 less than or equal to 5, and because you can see that every element is 

comparable because of the structure. And the length of a chain is the number of vertices minus 1 

there is the cardinality of C minus 1. So, the length of this chain is basically a 5 minus 1 which is 

4, so the length is 4. So, you can think of many other chains it is very easy to see. 
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Once you have defined the chain as a poset a sub-poset, isomorphic to a chain is also called a chain 

in the poset. So, if every maximal chain in a poset P has the same length n then we say P is graded 

poset with rank n. So, we looked at this example. So, if you look at the chain, maximal chains here. 

So, what is the chain so, basically like so, {a, b} is a chain because {a} less than or equal to {a,b}. 

So, a, b is a chain, but this is not a maximal chain because I can extend the chain below and above, 

so, there is this maximal chain, this chain. So, the length of the chain is three here. Now, if you 

look through this you can verify that every maximal chain has the same length every maximal 

chain has length 3. So, in such a case we will say that this poset is graded and its rank is and n in 

this case it is 3.  

So, the length of the chain is three therefore, the rank is three. Now, you can take the elements and 

then look at the length of the chains from the smallest minimum elements and then you can see 

that if the length from the minimal element is whatever I then I can say that, that is the rank of the 

element. So, I will say that this is 1 this is 2 and this is 3. So, elements in this level you can verify 

that are all having rank 2 hear all of them having rank 1 and here this is 0 and this is 3. 

So, this intuitively tells you why this is graded of given rank. Now, as an exercise you show that, 

𝐵𝑛 for any arbitrary n is also graded of rank n. Now suppose you have a poset P which is graded 

with rank n and suppose 𝑝𝑖 denote the number of elements of rank i which is rank i is the distance 

from the minimum element, then ∑ 𝑝𝑖𝑥𝑖  𝑛
0 is called the rank generating function of the poset. 



So, for example, in this case you have 𝑝0 = 1, 𝑝1 = 3,  𝑝2 = 3,  𝑝3 = 1. So, you have this and 

then this you can now write summation this values into 𝑥𝑖 to get rank generating function. We will 

not look at the rank generating function at the moment. We will only look at it later, when we look 

at the generating functions. 
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So, now, an anti-chain or a clutter is a sub-poset, where no two elements are comparable. So, if 

you have a subset where no two elements are comparable for example, if you take this poset and 

if you take b and c, b and c are not comparable. Similarly b and e are also not comparable. So, this 

subset {b, e} or {b, c} are clutters or anti-clutters. So, you can find several of these in these 

examples for example, 2, 3, 5 and 7 form an anti-chain 5 and 4, anti-chain 7 and 8 form an anti-

chain.  

Now, when you have two elements x and y in a poset P and say a third element w is an upper 

bound for elements x and y if w is greater than or equal to x and w is greater than or equal to y. 

So, x and y themselves may not having any relation between them, there could be also but then an 

upper bound is an element which is greater than or equal to both of these elements. 

So, in this example, in the poset P for example, the element d is greater than or equal to b and c. 

So, b and c has d as an upper bound. Now an upper bound is called a least upper bound. So, x and 

y are elements for which a z is an upper bound. So, z is the least upper bound, if for every upper 



bound let us say w of x and y of course, w is greater than or equal to z, because z is the, is an upper 

bound, but it is there is no smaller upper bound for x and y. So, then it is a list upper bound.  
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So, similarly you can define the notion of greatest lower bound and if a least upper bound of x and 

y exists, then it is unique. Why?  you think about it and prove it, it is easy to see, but try to argue 

it. So, if a least upper bound of x and y exists, it is unique and this is denoted usually by 𝑥 ∨ 𝑣  

where 𝑥 ∨ 𝑣 is read as x join v and similarly, the greatest lower bound again if exists is unique and 

it is derived by 𝑥 ∧ 𝑣. So, we read it as x meet v.. 

Now a poset where every pair of elements has a least upper bound and a greatest lower bound it is 

called a Lattice. Again, there is a whole branch on Lattice theory, but we will not look at much of 

lattices just in case of some exercise or something mentions Lattice, I just want you to know that 

what is it? So, that is the only reason we defined Lattice and it has very nice properties, maybe in 

some of the exercises you can see why it is nice. 
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Now, show that every finite lattice has a  0̂ and a 1̂. So, every pair of elements has a least upper 

bound and greatest upper bound that says that it is a lattice but if it is also finite, then there is a 

unique minimum element and then maximum element. So, that is why it’s a nice homework. I 

think that is all about our introduction to partial orders.  
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So, if you how to posets P and Q, the Cartesian product of P and Q is;  



𝑃 × 𝑄 = {(𝑥, 𝑦): 𝑥 ∈ 𝑃, 𝑦 ∈ 𝑄} such that (𝑥, 𝑦) ≤𝑃×𝑄  (𝑥′, 𝑦′) if and only if 𝑥 ≤𝑃 𝑥′,   𝑦 ≤𝑄 𝑦′  

So, the Cartesian product of the posets is defined this way. 

It is also called direct product in some textbooks. So the Cartesian product of the two posets P and 

Q is precisely defined over the Cartesian product of the sets P and Q such that, the tuple x , y is 

less than or equal to the tuple x dash y dash if and only if x is less than or equal to x dash in P and 

y is less than or equal to y dash in Q. So, here is the pictorial representation or Hasse-diagrammatic 

representation of the product. 

So, you have this poset and you have this poset or take the product of these two is obtained by 

replacing for example, every copy every vertex of the first poset with a copy of the second poset. 

So, I replace every vertex with a copy of the second poset and whenever there is, a relation here 

the corresponding elements of this two posets are joint in a relation the same relation that we are 

having here and similarly. 

So, we get the product. Now, from this definition if you look at this definition, you can say that 

the product it does not depend on which way you are going to do the substitution you can instead 

you can take these vertices and substitute copies of this. So, what happens is the Hasse-diagram 

looks very different from the Hasse-diagram that we got here. But they the posets are indeed 

isomorphic. 

So, try to work out some examples and convince yourself that if you replace in a different way you 

will get a different structure of the Hasse-diagram, but the posets are indeed isomorphic. So, take 

it as homework take some small example and work out take the product and see that they are they 

are isomorphic if even if you take P cross Q or Q cross P. 
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A homework: Consider the chain of length 1 which is two element chain. So, just 1 and 2. So, 1 is 

the smallest element 2 is the largest element, so, 1, 2 from the chain. So, the chain of length 1 or 

the chain of 2 elements is denoted C. Now show that the poset that we looked at 𝐵𝑛 is isomorphic 

to the n-fold product of C with itself. That is you take this poset multiply it with itself n times and 

then you will get a poset and that was it is isomorphic to 𝐵𝑛. 

So, this is the subset poset with the containment relation for the power set of n elements set. So, 

that is 𝐵𝑛. So, this is what so, product of  C with itself n times is isomorphic to 𝐵𝑛. So, this is a 

very nice homework and  with that we finished the introduction to the posets and try to look at a 

few more examples from the textbook and then convince yourself that you are comfortable with 

the notion of posets and all the related concepts that we have defined here. 

 


