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Here is another interesting question that we want to look at. Suppose you have some kids 

maybe, a son and a daughter maybe and then you invite their friends to come for a sleepover. 

So, they come and stay for a night. So, their friends arrive and then, there is total 10 kids, 

including their friends and the children together there are 10 of them.  

Now when there 10 children, you cannot put them all into the same room because the rooms 

are not internally easy to accommodate 10 people. So, you say that okay we do not mind if you 

all want to put in 1 room but let us not do that. We will give you 4 rooms and you must use the 

4 rooms to sleep.  

So, we are given 4 rooms to the 10 children. Now you say that okay you go to the 4 rooms and 

then whichever groups you want form you can, who all want to sleep with others decide and 

go and find the corresponding rooms and then, let us know and then go to the rooms. Now how 

many different ways this can happen because, depending on the children’s preference whom 

to group with, there can be many possible ways to do this. So, how many different possible 

ways this can happen?  



So, how do you solve this? If you ask this, then there is something which is not very clear about 

this question. So, what is not clear is that when we say how many different ways, what exactly 

do we mean? Because, I can say that, the children let us say A, B and C are going to the room 

number 1 because I gave 4 different rooms. So, room number 1 is not the same as them going 

to room number 2 because rooms are distinct.  

If I consider the rooms are distinct, then they are not the same, but maybe if you do not consider 

the rooms, I gave you 4 rooms does not matter. What matters is the way the children are 

grouped together. I want to just see that who are all going together to sleep. But if I also want 

to know, who all going to which room, then that is a different question. So, there are 2 different 

questions one can bring from this.  
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Now, both of them can be interesting question. So, therefore, we want to look at both of them. 

So what happens if which group of students or children go to which room is important and 

what happen if the rooms are not considered different, that is which group goes to which room 

is not important but what kind of groups are formed is only interesting.  

Now, if you think about it, you can see that these 2 questions even though they can be very 

different in their values, they are very related as well. So, can you think of some argument to 

say that solving one is like solving the other also in some sense? 
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So, this is an easy observation but I want you to think about this. So, think about it and tell me 

why solving one is as good as solving the other. Once you get an answer to the first one, you 

know how to solve the second one or vice versa. So again, I do not want to give all these small 

small whys right answers to all these small  ‘why’s’ because if you do not think about this, you 

are never going to learn things.  

So therefore, some of these question when I write this “why” and do not explain why, it should 

be something, which if you think about for some time, you should be able to come up with. It 

is not going to be a very difficult thing but something interesting and you should be able to 

come up with that argument. If you are not able to do that, then there is something that you 

have to work more. So, hoping that you solve, let us continue.  
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Now, let us look at the more than general statement of what we were looking at.  

So let 𝑘 ≤ 𝑛  be positive integer. A partition of the set, [𝑛] = {1, 2, … , 𝑛} to 𝑘 blocks is a set 

of 𝑘 subsets of the [𝑛]. Let us say, 𝐵 = {𝐵1, 𝐵2, … , 𝐵𝑘} where 𝐵𝑖’s are blocks such that 𝐵𝑖 ∩

𝐵𝑗 = ∅ and ⋃ 𝐵𝑖 = [𝑛]𝑘
𝑖=1 . 

So, I think I already mentioned this notation [𝑛] is the set {1, 2, … , 𝑛}. Now, so what we have 

defined here is a partition of a set. So, we have a set with 𝑛 elements I am partitioning into 𝑘 

blocks such that they are pairwise disjoint and the union is the whole set and now we want to 

find the number of possible such partitions.  

Number of partitions of the set {1, 2, … , 𝑛}  to the 𝑘 blocks with this property. If you just look 

at this definition, it would be very clear that the earlier question that we were looking at 

regarding the children’s sleepover party was precisely the same, in some case.  
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Now, here is an example. So, if you take the set 1, 2, 3, 4 then you can partition this it into 3 

blocks in 6 different ways. So, I want to partition into exactly 3 blocks. That can be done in 6 

different ways that is the claim. So, let us look at the 6 sets that I am going to give and see 

whether they are the partitions first. So, here is the sets: {{1,2}, {3}, {4}}, {{1,4}, {2}, {3}}, 

{{2,4}, {1}, {3}}, {{1,3}, {2}, {4}}, {{2,3}, {1}, {4}}, {{3,4}, {1}, {2}}. 

 So, these 6, we can see that they are each blocks are disjoint in each of these partitions. So, 

these are all partitions and you have exactly 3 blocks.  



A two element set and two singletons and since we want 3 blocks and we have 4 elements, the 

only way to partition is to have like 2 elements in one set and 1 element in the second set and 

again one element in the third set. And this will tell you why we can only have 6 possibilities. 

So, maybe you argue it slightly more formally. Why only 6 are there? So, 6 are already there 

but why there are no more. So, give me an argument for that.  
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Now, another example.  There are 25 partitions of the set {1, 2, 3, 4, 5} into 3 blocks. We said 

that, when there are only {1, 2, 3, 4}, number of partitions, into 3 blocks is only 6. Now, when 

you add 1 more, we have 25 of them. Now how is this exactly 25? Can you give an argument 

why this is 25? So, maybe you should stop and think about this for some time before going 

further because if you can do it on your own, that is the best.  

Now, let me give an argument if you have thought about it for some time, please continue. So, 

we are looking at the partition of set {1, 2, 3, 4, 5}. So, there is exactly 5 elements. Since we 

are looking at exactly 3 blocks, what we can observe is that the only possibilities are, you can 

have elements, the sets in the partition be of cardinality either 3 and if there is 3, and since we 

need exactly 3 blocks, if you take 3 elements into one set, the other 2 must be 1, 1 because 

there is only 5 of them. So, it could be, it should be like something like cardinality 3, 1, 1. So, 

we should have the blocks of cardinality 3, 1, 1. This is one possibility.  

Other possibility is that you have 2, 1 subset has 2 elements, then since there are only 2 more 

and we have 3 elements so we need to have another 2 and then 1 and you cannot put 4 into 1. 

You cannot put 1, 1, 1, 1, 1, etcetera because you are only allowed 3 blocks. So, one can verify 

that the only 2 possibilities are blocks of size 3, 1,1 or 2, 2 , 1. Now once you observe this, we 



know that since we have exactly 3 blocks and you select the first let us say, let us just 

concentrate on this part 3, 1, 1.  

Suppose you select a 3-element subsets from the 5 elements so which means that how many 

ways you can do this. You can do it in  (5
3
) = 10 possible ways.   

Then we have only choice is to take the remaining 2 elements as singleton. So, there is 3 

elements are already gone. The remaining 2 must be singletones and there is no choice there. 

So, we have exactly 10 possible ways to do this. On the other hand, if you look at the 2, 2, 1 

configuration, then you can see that if you choose the first two of the elements in the first (5
2
)  

ways, then if you select the remaining 2 elements or 1 element, once you choose 1 element, it 

is very clear what are the other 2 elements going to be or if you select the 2 elements again, it 

will be clear what is the remaining 1 element. So, the remaining 2 elements can be chosen in 

how many ways? (3
2
)  possible ways. 

Then the last one, there is no choice. But there is a problem. If you use the product rule here, 

like (5
3
)  and (3

2
), then what you will get is that,  (5

3
) × (3

2
) = 10 × 3 = 30, but I claim that this 

is wrong. Why is this wrong? This is wrong because when we were doing the counting, we did 

some overcounting. Can you think of why there is some overcounting?  

So, the reason there is an overcounting is that when you selected the first 2 element subset in 

(5
3
) or 10 possible ways and then you selected a 2 element subset from the remaining 3 

elements, the 2 element subset that you selected in the first and the remaining 2 elements that 

you selected in the second could also appear as those 2 elements were selected in the first 

choice and the other 2 elements are selected in the second choice. So, in these 2 possible ways, 

it can count and we are counting both of them when you take the multiplication.  

So therefore, since we are counting each of this exactly twice, we can divide by 2. So, we will 

get 
10×3

2
= 15. So, I have 15 possible ways only, not 30 possible ways. And therefore, the total 

number of such partitions in the blocks is 15 + 10 = 25. So, we need to be very careful when 

we can we do this kind of counting because overcounting must be avoided or if you do 

overcount, you have to find a suitable way to deal with that.   
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So, if you are looking at 𝑛- element set and you are looking at 𝑘 blocks then 𝑆(𝑛, 𝑘) denotes 

the number of partitions of an 𝑛-element set into 𝑘 blocks s and this is called Stirling number 

of second kind. So, the number of partitions of a set into 𝑘 blocks is denoted by 𝑆(𝑛, 𝑘)  and it 

is called the Stirling number of second kind. So, one can ask what has happened to the first 

kind?  

Why we are not looking at the first kind before we look at the second kind. We will look at the 

first kind sometime in the future, but I know that is much more difficult to deal with, much 

more involved computation and we will look at those things in the later part of the course. So, 

for the time being, we will stick with the Stirling number of the second kind. Now, how do you 

find 𝑆(𝑛, 𝑘)? Can you find a formula for 𝑆(𝑛, 𝑘). Can you find a way to compute 𝑆(𝑛, 𝑘). These 

are some interesting questions one can ask. So, I want you to think about this question. 
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And here are some observations. So, 𝑆(𝑛, 𝑘) = 0, if 𝑘 > 𝑛. That is very clear and 𝑆(𝑛, 0) = 0  

, 𝑛 > 0. That is also kind of clear why and 𝑆(0,0) = 1.   

Now  𝑆(𝑛, 1) and 𝑆(𝑛, 𝑛) are always going to be equal to 1. This is also another observation. 

You should verify that, whatever I claim, do not take it for granted. When I say something and 

you saying that why it is that case, it means that you are supposed to figure it out yourself. 

Think about this and find out why and they are kind of easy question. That is why, I am giving 

you it as just a statement without any argument. So, figure out why these things are the way I 

have defined it here.  
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Now to come up with solutions to this, we might need to use some new ideas. So, one of the 

ideas that is called recursion. Now, suppose you are given a sequence of unknown value. So, 

let us say 𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛, ….,  is  the given sequence of unknown values. Now what we want 

to know is that we want to find out a way to find or describe let us say 𝑎𝑛.  

So, suppose I write 𝑎𝑛 = 𝑓(𝑛) where the right hand side expression does not depend on any of 

the 𝑎𝑖’s but it depends on 𝑛. It can depend on 𝑛. So if 𝑎𝑛 = 𝑓(𝑛), where the right hand side is 

an explicit formula without depending on any of the 𝑎𝑖’s, any of the unknowns, but it can 

depend on 𝑛 is called a closed formula for 𝑎𝑛.  
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Now, on the other hands, consider a formula of the form, 𝑎𝑛 = 𝑓(𝑛, 𝑎0, 𝑎1, … , 𝑎𝑛−1). Index 

should be less than 𝑛 and together with some initial conditions like, 𝑎0 is something, 𝑎1 is 

something, etcetera. Some of the things can be already given which are not defined recursively. 

They are given explicitly. Then, such a statement is called a recursive formula for 𝑎𝑛.  

So, 𝑎𝑛 depends on some previously determined unknowns and 𝑛 also but it does not depend 

on anything that we have not come across so far. So, such a description is called a recursive 

formula. So basically, if you know the some of the initial values, you should be able to find the 

next one. which is not known. Then using that, you can find the next one now in a recursive 

manner. That is why it is called a recursive formula.  
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So, let us look at an example. So, for  𝑛 ≥ 0, let 𝑷𝑛 be the set of all subsets of the set {1, 2,…, 

n} and let us define 𝑎𝑛 = |𝑷𝑛|. So, this is something most familiar to you. So basically, you 

are looking at the power sets of the sets that we are talking about, set of all subsets of set {1, 2, 

…, n}. So, power sets of set {1, 2, …, n} and we want to find out what are the cardinalities. 

We already know how to do it using the product rule we did long time back, but now we want 

to use and try to solve it using a recursive formula. So, we come up with the recursive formula  

and try to solve it and get an answer.  

So, for solving something like this, what we can do? Well, what we can do is that we can do 

some observations. So first we observe that 𝑎0 = 1, because 𝑎0 = |𝑷0| and 𝑷0  is the set of all 

subsets of the empty set, which is the sets containing empty sets and its cardinality, because it 

is singleton, the cardinality is exactly 1. So, 𝑎0 = 1 and we get an initial condition.  

Now, we need to find the recursive relation, but to find the recursive relation, what we do is 

the following. So given, let us say that 𝑛 is greater than or equal to 1 to construct or to build 

any subset. Subsets, let us say 𝑆 ∈ 𝑷𝑛 .  What we can do is the following.  

So, to select such a subset, we will select, we will select any subset 𝑆′ ∈ 𝑷𝑛−1. So, 𝑆′ is a subset 

of the set {1, 2, …, 𝑛 − 1}. So 𝑆 is some subset of {1, 2, …, 𝑛 − 1} and then we will select the 

element 𝑛 and say that, now, I have 2 choices.  

One is either to add 𝑛 to this set 𝑆′ to construct a subset of 𝑷𝑛  or I do not add it. I just keep it 

as it is. So, there are these 2 choices. Either I add this element to that set or I keep the subset at 

it is. Now, this way I can create all possible subsets of 𝑷𝑛, because I take all the subsets of {1, 



2, …, 𝑛 − 1} and then I add 𝑛 or I do not add 𝑛. So, I will get all possible subsets this way. So, 

there are 2 choices, either add n to S dash or not add n to S dash.  
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So now, once you know this, using the product rule we can figure out that 𝑎𝑛 = 2. 𝑎𝑛−1,   𝑛 ≥

1. We are doubling it because I take this guys any element here, I add 𝑛 or I do not add 𝑛. Both 

way, I get a subset of  𝑷𝑛   and therefore, I get 2 times of this many, which is 2𝑎𝑛−1. Now with 

the initial condition that we figured out that is 𝑎0 = 1. We can now try to find out the values 

of 𝑎𝑛 as follows.   

 𝑎0 = 1 and therefore 𝑎1 = 1 × 2 = 2. Then 𝑎2 = 2 × 2 = 4, then you get 8, 16, etcetera for 

𝑎3, 𝑎4, etcetera. So, we find out what are these numbers. So now from this, we can guess the 

value of 𝑎𝑛. We see that 𝑎𝑛 is something like 2𝑛,  and then once we find the guess, we verify 

this and we can use induction to prove it actually. 
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So, how do we do that? So, we do the following. We guess that 𝑎𝑛 = 2𝑛 and to prove we use 

induction. So, the base case is 𝑛 = 0, we already know that 𝑎0 = 1 = 20. So therefore base 

case is fine. Now we take the case, 𝑎𝑛 = 2. 𝑎𝑛−1 and by induction hypothesis we have 𝑎𝑛−1 =

2𝑛−1 and therefore. So,  𝑎𝑛 = 2. 𝑎𝑛−1 = 2.2𝑛−1 = 2𝑛. Therefore, we have, the proof.  

So therefore, by induction, we get that 𝑎𝑛 = 2𝑛. So if you can guess, what is the formula, 

closed formula for 𝑎𝑛, most often we can use induction easily because we know, even though 

it may depend on 𝑎1, 𝑎2, etcetera, 𝑎𝑛−1, since we know that each of them has the same formula, 

we substitute that and then try to figure out why the recursive relation must satisfy this and if 

it is satisfied, then we get that it is indeed the case. So, this way, we have proved it.  

(Refer Slide Time: 30:36) 

 

Now, a homework. This is a question that I want you to think very thoroughly about. It is a 

very interesting question and this question has been solved  by the Indian mathematicians many 

many years before, I mean thousands of years back in fact. So, I want you to think about this, 

and try to see how you will solve this and how you will form a recurrence relation for this for 

example.  

So, here is the question. So, in a certain type of poetry in Indian languages like Malayalam, 

Sanskrit poetry, the syllables of length 1 and length 2 are allowed. So, each letter can be either 

short or long ah, aa, ka, kaa, etcetera. So, we have this long and short syllables. We will say 

that laghu the short one and guru the long one.  

The long one has exactly twice the length of the short one and that is a long-accepted 

convention. In ah, aa,  the second one is twice the length of the first one, it is supposed to be 



like that even though we do not do it as precisely when we talk, it should be exactly like that. 

So, the syllables of length 1 and 2 are allowed.  

Now, the total length of each line in the poem is fixed to be a positive integer in terms of the 

syllable length, it should be exactly the same, for certain kind of poetry. We will say that okay, 

we will allow exactly let us say, length 5 syllables whatever you use, it should be of length 5. 

So, you can have maybe 5 laghus like 5, 5, 5 like laghu, laghu, laghu, laghu, laghu, aa, aa, aa, 

aa, aa.  

So, there are 5 of them or you can have maybe 2 and 1, 1, 1 or 1, 2, 1, 1, or 2, 2, 1, etcetera. All 

these possible lengths are allowed. So, once the length of each line is predefined something 

like this kind of a pattern we can decide. 
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So, once you decide a pattern that such a pattern is called a metre, for example LLG is a metere 

width length 4 because LL 1, 1 and G has 2. Guru has 2  and leghu has 1. So, 1, 1, 2 it has 

length 4 and GLG has length 5 because it is 2, 1, 2. Length 2, guru has length 2 then leghu has 

1 and again 2. So, formulate a recursive formula to count 𝑓𝑛 where 𝑓𝑛  is the number of different 

meters of length 𝑛.  

So, some formula define 𝑓0, 𝑓1  etcetera. You find some initial conditions and write a recursive 

formula to define 𝑓𝑛  and then if you can solve the recursive formula, well, even better, but at 

the moment, I want you to come up with a recursive formula for this. So, this is what I want 

you to do.  
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Now, before we finish today, let me state a theorem, and you will think about the proof. So, 

the theorem is the following. 

For all positive integers 𝑘 ≥ 𝑛, the Stirling number of second kind,  𝑆(𝑛, 𝑘) = 𝑆(𝑛 − 1, 𝑘 −

1) + 𝑘. 𝑆(𝑛 − 1, 𝑘).  

So, it satisfies this identity. So, can you find an argument why this is the recursive formula for 

𝑆(𝑛, 𝑘)? So, this is a recursive formula definition for 𝑆(𝑛, 𝑘), since here it depends on 

𝑆(𝑛 − 1, 𝑘 − 1) and 𝑆(𝑛 − 1, 𝑘) and recursively it can depend on the previous one basically. 

So, this is what I want you to do. So, think about how to do this and we stop for today. We will 

continue with the proof of this and other results in the next lectures.  

.  

 

 

 

 


