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Will now do some exercises. First one

Exercise 1: Hilbert and densely defined and closed. So, if it𝑉 𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑉

is densely defined you can define that joint and since is a real Hilbert space we always𝑉

deal with real unless otherwise mentioned so we can or even complex does not matter but

in this case real we can define the joint from into itself. So, then is densely defined.𝑉 𝑉 𝐴*

We know that whatever may be a is always closed if is densely defined and close𝐴* 𝐴

then is also densely defined and closed. So,𝐴*

Solution: so we so let for all . So, we want to show .(𝑣, 𝑤) = 0 𝑤 ∈ 𝐷(𝐴*) 𝑣 = 0

So, this is the Halm-Banach theorem method of showing something is dense so we have

which is a subspace and if you want to show it is dense you have to take a vector v𝐷(𝐴)

which or a functional in which case by the rays representation theorem is just the inner

product with a vector and therefore we have to show that this is equal to 0.

So, if not , then you have that does not belong to the graph of because𝑣 ≠ 0 (0, 𝑣) 𝐴

graph of is what u a u u is in domain of if the first component is 0 the second𝐴 𝐴

component must forcibly be 0. So, if this cannot be the graph of and graph of𝑣 ≠ 0 𝐴 𝐴

is closed that is given here that is the hypothesis the graph of is closed therefore you𝐴



have a closed subspace of and you have a vector which is not in it. And therefore,𝑉 × 𝑉

by the Halm-Banach there exists such that.(𝑥. 𝑦) ∈ 𝑉 × 𝑉

So, y acting on inner product so there exists a pair (x y) and here this is𝑉 (𝑥, 𝑦) ∈ 𝑉 × 𝑉

the inner product. So, this is not equal to 0 and

for all that means (x y) and (())(03:46) all the elements(𝑥, 𝑢) + (𝑦, 𝐴𝑢) = 0 𝑢 ∈ 𝐷(𝐴)

of the graph. So, you have a continuous in functional which again a pair of elements in

such that it should not vanish on 0, so is not equal to 0 and it vanishes on𝑉 × 𝑉 𝑉 (𝑦 𝑣)

all the elements of the graph.

That means x cube plus but this implies that

|(𝑦, 𝐴𝑢)| ≤ ||𝑥|| ||𝑢||

and this implies that by definition and that implies that because𝑦 ∈ 𝐷(𝐴*) (𝑣, 𝑦) = 0

that is a definition of v here and but that is a contradiction because we know that is(𝑣, 𝑦)

not 0 and therefore so this implies that that is dense.𝑣 = 0 𝐷(𝐴*)

Exercise 2: a 2 by 2 complex matrix with distinct eigen values. Find beta𝐴 α,  β

such that

𝑒𝐴 = α𝐼 + β𝐴.

Solution: so let

𝐴 =  λ
1
 ,   0 ;  0  ,  λ

2[ ],   

so this diagonal matrix with distinct so So, then what isλ
1

≠ λ
2
.

𝑒𝐴 = [𝑒
λ

1 ,   0  ;   0  ,  𝑒
λ

2 ] = α𝐼 + β𝐴



this is just straight forward calculation I plus a plus a square by two factorial et cetera if

you compute so you will get precisely this thing here so now you want this to be equal to

alpha I plus beta A.

So, then you have

𝑒
λ

1 = α + βλ
1
  𝑎𝑛𝑑  𝑒

λ
2 = α + βλ

2
.

So, if you saw and , therefore if you solve this pair of equations you will get betaλ
1

≠ λ
2

if you subtract you will get

β = 𝑒
λ

1−𝑒
λ

1

λ
1
−λ

2
   𝑎𝑛𝑑  α =

λ
1
𝑒

λ
1−λ

2
𝑒

λ
1

λ
1
−λ

2
.  

Now, if A has distinct eigen values then A can be written as is theλ
1

≠ λ
2

𝑃−1𝐷𝑃 = 𝐴,   

diagonal matrix . So, this is you can diagonalize the matrix using𝐴 =  λ
1
 ,   0 ;  0  ,  λ

2[ ]  

eigen vectors. Then what is is nothing but if you do the calculation it will be𝑒𝐴 𝑃−1𝑒𝐷𝑃

and that is equal to

𝑒𝐴 = 𝑃−1𝑒𝐷𝑃 = 𝑃−1 α𝐼 + β𝐷( )𝑃 = α𝐼 + β𝐴,

Similarly, A cube A power 4 and so on and therefore e power A is nothing but 𝑃−1𝑒𝐷𝑃

and this is equal to this and that is equal to alpha times identity plus beta times 𝑃−1𝑒𝐷𝑃

since . So, it is the same constant so you have what you do for the diagonal𝑃−1𝑒𝐷𝑃 = 𝐴

serves for all the matrix also.
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Exercise:3 let and then show thatα, ω ∈ ℝ 𝐴 = [α ,  − ω;  ω ,    α]

𝑒𝑡𝐴 = 𝑒α𝑡[ 𝐶𝑜𝑠 ω𝑡  ,   − 𝑆𝑖𝑛 ω𝑡  ;   𝑆𝑖𝑛 ω𝑡  ,   𝐶𝑜𝑠 ω𝑡  ].

Solution: so A can be written as

𝐴 = α𝐼 +  [0 ,  − ω;  ω ,    0].

So, if you took



𝑒𝑡𝐴 = 𝑒α𝑡𝐼𝑒𝑡𝐵

so this is sum of two matrices they commute because one of them is identity and therefore

e power this will be e power alpha I, where .𝑒𝑡𝐵 𝐵 = [0 ,  − ω;  ω ,    0]

But e power alpha I is nothing but e power alpha t times I. So, that is e power alpha t times

. So, now you have what are the eigen values of this matrix. So, if you compute the𝑒𝑡𝐵

eigen values of this matrix they are what so lambda square minus trace is 0 plus

determinant so that will give plus omega square equal to 0 so lambda equals plus or minus

i omega. So, then if you compute the constants then that then you can write

𝑒𝐵 = 𝐶𝑜𝑠 ω𝑡 + 1
ω𝑡 𝑆𝑖𝑛 ω𝑡𝐵.

So, this apply exercise 2. And then you will get whatever you want. So, if you from this

you should be able to complete this exercise.
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Exercise 4: , semi group on a Banach space so what do you mean by{𝑆(𝑡)}
𝑡≥0

𝐶
0

exponentially stable that means that exists such that𝑀, ω > 0

||𝑆(𝑡)|| ≤ 𝑀𝑒−ω𝑡

this is then it decays exponentially the norm so.

Solution: So, show that is exponentially stable if and only if there exist𝑆(𝑡) 𝑡
0

positive such that



so this is a very beautiful characterization so if you have one element of the||𝑆(𝑡
0
)|| ≤ 1

semi group which has a norm strictly less than 1 then the semi group norms decrease

exponentially. So, if so solution so , t greater than equal to 0 exponentially stable that𝑆(𝑡)

means .||𝑆(𝑡)|| ≤ 𝑀𝑒−ω𝑡,    ω > 0

So, this implies there exists a sufficiently large such that norm of is less than one𝑇 𝑆(𝑡)

for the in fact for all . So, then trivially so conversely let t naught be||𝑆(𝑡)|| ≤ 1 𝑡 ≥ 𝑇

greater than 0 with norm t naught strictly less than 1 then norm of S delta is lessening𝑆(𝑡)

to some A for all delta 0 less than equal to delta less than equal to t naught.

Because you know there exists omega naught greater than equal to 0 and naught such𝑀

that norm of is less than to naught e power omega naught t for all t given any semi𝑆(𝑡) 𝑀

group you have this and therefore if you put. This increasing function exponential

montana increasing function therefore for all t less than equal to t naught you have norm

of is less than equal to naught e power omega naught t naught which is I call as .𝑆(𝑡) 𝑀 𝐴

So, we have some elements here. So, now you have that log norm of S t naught is negative

because S t naught is less than 1. So, now you put omega greater to 0 omega equals minus

1 by t naught log norm S t naught. So, this will be positive. So, norm of S delta for all 0

less than equal to delta less than t naught norm of S delta is less than equal to which is𝐴

equal to e power omega t naught e power minus omega t naught.𝐴

Now, delta is less than t naught so minus omega delta will be greater than minus omega t

naught so e power minus omega delta will be greater than e power minus omega t naught.

So, this is less than equal to e power omega t naught e power minus omega delta. Now,𝐴

given any t, t greater than 0 we can write t as n times t naught plus delta where 0 less than

equal to delta less than t naught the usual trick which we did later on.

So, by the semi group property is power n times . Now therefore𝑆(𝑡) 𝑆(𝑡
0
) 𝑆(δ)

||𝑆(𝑡)|| ≤ ||𝑆(𝑡
0
)||𝑛 ||𝑆(δ)|| ≤ 𝑒

−𝑛ω𝑡
0(𝐴𝑒

ω𝑡
0)𝑒−ωδ = 𝑀𝑒

−𝑛ω𝑡
0𝑒−ωδ = 𝑀𝑒−ω𝑡



And norm of is less than equal to e power omega t naught times e power minus𝑆(δ) 𝐴

omega delta. So, this is equal to M so M is equal to e power omega t naught and then e𝐴

power minus omega n t naught and e power minus omega delta which is equal to M e

power minus omega t. So, that proves the exponential d k.
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Exercise 5: let Let . Show that there𝑐 ∈ ℝ,   𝑐 ≠ 0. 𝑢
0

∈ 𝐻2(0, 1) ∩ 𝐻1
0
(Ω)

exists a unique solution of

∂𝑢
∂𝑡 − ∂2𝑢

∂𝑥2 + 𝑐 ∂𝑢
∂𝑥 = 0,     0 < 𝑥 < 1,   𝑡 > 0.

𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,     𝑡 > 0,

𝑢(𝑥, 0) = 𝑢
0
(𝑥).

Solution: so we set and we set and we defineΩ = (0 , 1) 𝑉 = 𝐿2(Ω)

𝐷(𝐴) = 𝐻2(Ω) ∩ 𝐻1
0
(Ω)

and set 𝐴𝑢 = 𝑢'' − 𝑐𝑢',

so then what is (𝐴𝑢 , 𝑢) =
0

1

∫ 𝑢''𝑢 − 𝑐
0

1

∫ 𝑢'𝑢 =−
0

1

∫ |𝑢|2 𝑑𝑥.

And minus c by 2 integral u dash u is u square prime dx 0 to 1. Now, if you evaluate this at

the end points this because it is a prime and therefore you will get it is 0 at the two end



points by the boundary condition and therefore this term equal to 0 and therefore this is

less than or equal to 0. So, you have that is a dissipative operator.𝐴

Now, you look at this So, then in this(𝐴𝑢 , 𝑢) =
0

1

∫ 𝑢''𝑢 − 𝑐
0

1

∫ 𝑢'𝑢 =−
0

1

∫ |𝑢|2 𝑑𝑥. (𝐴𝑢 , 𝑢)

case is equal to integral mod u dash square 0 to 1 plus c integral 0 to 1 u dash u again this

is 0 by the calculation which we did just now plus integral u square d x which is equal to

norm u square 1 omega. And therefore, this is elliptic therefore for every if𝐻1
0
(Ω)

there exists a unique u in by Lax-Milgram.𝑓 ∈ 𝐿2(Ω) 𝐻1
0
(Ω)

Such that integral a u v equals integral f v on omega that is and then if you look out what

you say it is minus u double dash plus c u dash plus u equal to f in omega u equal to 𝑢
0

equals equal to 0 and u double dash is equal to c u dash plus u minus f and that belongs𝑢
1

to . So, this implies that u is in intersection which is nothing𝑓 ∈ 𝐿2(Ω) 𝐻2 (Ω) 𝐻1
0
(Ω)

but . And what is the differential equation say I minus A u a is what u double dash𝐷(𝐴)

minus c u dash. So, this implies therefore is maximal dissipative implies𝑅(𝐼 − 𝐴) = 𝑉 𝐴

there exists a unique solution to star.
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(6) Klein Gordon equation. So, let and smooth𝑚 ∈ ℝ,  𝑚 ≠ 0 Ω ⊂ ℝ𝑁

bounded open set let and then there exists aΓ = ∂Ω 𝑓 ∈ 𝐻2(Ω) ∩ 𝐻1
0
(Ω) 𝑔 ∈ 𝐻1

0
(Ω)

unique solution u such that

∂2𝑢

∂𝑡2 − △𝑢 + 𝑚2𝑢 = 0 ,   Ω × (0, ∞)

𝑢 = 0    Γ × (0, ∞)

𝑢(𝑥, 0) = 𝑓(𝑥),    𝑥 ∈ Ω

∂ 𝑢

∂𝑡
(𝑥, 0) = 𝑔(𝑥)   𝑥 ∈ Ω.

and 𝑢 ∈ 𝐶 [0, ∞);  𝐻2(Ω) ∩ 𝐻1
0
(Ω)( ) ∩ 𝐶1 [0, ∞); 𝐻1

0
(Ω)( ) ∩ 𝐶2 [0, ∞);  𝐿2(Ω)( ).
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Solution: So, we set and then you get𝑑𝑢
𝑑𝑡 = 𝑣

𝑑𝑣
𝑑𝑡 = ∆𝑢 − 𝑚2𝑢

so you said v is equal to like in the wave equation and𝐻1
0
(Ω) × 𝐿2(Ω)

and you write So,𝐷(𝐴) = 𝐻2(Ω) ∩ 𝐻1
0
(Ω)( ) × 𝐻1

0
(Ω) 𝐴𝑢

−
= (𝑣,   ∆𝑢 − 𝑚2𝑢).



𝑢
−

= (𝑢, 𝑣) ∈ 𝐷(𝐴)

and now you consider

(𝑢
−1

, 𝑢
−2

) =
Ω
∫ ∇𝑢

1
. ∇𝑢

2
+ 𝑚2

Ω
∫ 𝑢

1
𝑢

2
+

Ω
∫ 𝑣

1
𝑣

2
,    𝑢

−1
= (𝑢

1
, 𝑣

1
),   𝑢

−2
= (𝑢

2
, 𝑣

2
).

So, this is in and this is in .𝐿2 𝐻1
0

∩ 𝐻2

So, then this is defines an inner product equivalent to usual inner product on

is the same so this you are taking a thing and that the norm is less𝐻1
0
(Ω) × 𝐿2(Ω) 𝐿2

than the norm by the punch array inequality and therefore this is less than the constant𝐻1
0

times the usual norm and the usual norm is of course less than this and therefore you have

that these two are equivalent.

So, this usual inner product which is . Now in this new inner
Ω
∫ ∇𝑢

1
. ∇𝑢

2
+

Ω
∫ 𝑣

1
𝑣

2
(𝐴𝑢,  𝑢)

product is equal to integral what is , is v this so you will have grad v dot grad u plus m𝐴 𝐴

square integral v u so u equals . And then plus delta u v minus m square u(𝑢, 𝑣) ∈ 𝐷(𝐴)

v so these two get cancelled and then these two also get cancelled and therefore this is

equal to 0.

So, now let and . So, we want to show so we want to𝐹 ∈ 𝐻1
0
(Ω) 𝐺 ∈ 𝐿2(Ω) 𝐼 − 𝐴 = 𝑉

solve the following equations so find . So, such that and minus(𝑢, 𝑣) ∈ 𝐷(𝐴) 𝑢 − 𝑣 = 𝐹

Laplacian u plus m square u plus v equal to G and then that will give you if you add these

two minus Laplacian u plus m square u. So, m square plus 1 u equals F plus G and then

this can all always be solved so F so this belongs and this belongs to .𝐻1
0
(Ω) 𝐿2(Ω)

So, this belongs to implies there exists unique solution and plus𝐿2(Ω) 𝑢 ∈ 𝐻1
0
(Ω)

regularity implies . And now you can write and this𝑢 ∈ 𝐻2 (Ω) × 𝐻1
0
(Ω) 𝑣 = 𝑢 − 𝐹



belongs so this implies and it solves the system of equations so𝐻1
0
(Ω) (𝑢, 𝑣) ∈ 𝐷(𝐴)

you have that and this implies there exists unique solution with required𝑅(𝐼 − 𝐴) = 𝑉

properties from general theory.

Because you have little more than dissipative you have in fact like in the(𝐴𝑢, 𝑢) = 0

wave equation and therefore you can you have this. So, with this I will stop these

exercises and this course has also come to an end. I do hope you did enjoy it and you got

something out of it and that it was a useful learning experience for you thank you for your

attention.


