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Before, I begin let me fix ERRATUM. So, in the theorem on the wave equation. I wrote the

conservation of energy So, the correction is this∂𝑢
∂𝑡 (., 𝑡)|| ||

2

0,Ω
+ |𝑢(., 𝑡)|2

1,Ω
= |𝑔|2

0,Ω
+ |𝑓|2

1,Ω
.

should be because you the space is for it is an and this is and this should u1, Ω ∂𝑢
∂𝑡 𝐿2 𝐻1

0

correspond to f, correspond to g and that is conserved.∂𝑢
∂𝑡

So, this is the thing and another place when writing the equation for I wrote you wouldℝ𝑁 ∂𝑢
∂𝑡

have figured it out it should be squared. So, today we will look at one more∂2𝑢

∂𝑡2

examples. So, this is the Schrodinger equation. So, this is an equation which is important

in quantum mechanics.



So, you take bounded open set and we look for for theΩ ⊂ ℝ𝑁 Γ = ∂Ω 𝑢: Ω × [0,  ∞) → 𝐶

first time we are going to deal with something it is complex valued well for few moments and

such that,

𝑖 ∂𝑢
∂𝑡 − ∆𝑢 = 0   𝑖𝑛  Ω × (0, ∞),

𝑢 = 0   𝑜𝑛   Γ × (0, ∞)

𝑢(𝑥, 0) = 𝑢
0
(𝑥)  𝑓𝑜𝑟 𝑥 ∈ Ω.

So, you have an i here in front otherwise it looks very much like the heat equation. So, we are

want to deal with real functions. So, we write

the real and imaginary parts. So, we separate the real and imaginary parts in this𝑢 = 𝑢
1

+ 𝑖𝑢
2
,

equation.
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And then so, separating real and imaginary parts, we get the following system of equations

∂𝑢
1

∂𝑡 − ∆𝑢
2

= 0,    𝑖𝑛  Ω × (0, ∞),

∂𝑢
2

∂𝑡 − ∆𝑢
1

= 0,    𝑖𝑛  Ω × (0, ∞),

𝑢
1

= 𝑢
2

= 0,    𝑜𝑛   Γ × (0, ∞),



𝑢
1
(𝑥, 0) = 𝑢

1,0
(𝑥)    𝑓𝑜𝑟  𝑥 ∈ Ω.

𝑢
2
(𝑥, 0) = 𝑢

2,0
(𝑥)    𝑓𝑜𝑟  𝑥 ∈ Ω.

So, this is the real and imaginary parts. So, we have a following this system of equations which

we want to solve, and now we have the following

Theorem bounded open set of class and in thenΩ ⊂ ℝ𝑁 𝐶2, 𝑢
1,0

𝑢
2,0

𝐻2(Ω) ∩ 𝐻1
0
(Ω)

there exists a unique solution of star such that.

So,
Ω
∫ |𝑢

1
(𝑥, 𝑡)|2𝑑𝑥 +

Ω
∫ |𝑢

2
(𝑥, 𝑡)|2𝑑𝑥 =

Ω
∫ |𝑢

1,0
|2𝑑𝑥 +

Ω
∫ |𝑢

2,0
|2𝑑𝑥

So, this is for all t greater than 0. So, this is the theorem which we have. So,

Proof. So, we take and to be defined by𝑉 = (𝐿2(Ω))2 𝐴: 𝐷(𝐴) ⊂ 𝑉 → 𝑉

𝐷(𝐴) = (𝐻2(Ω) ∩ 𝐻1
0
(Ω))2,

𝐴𝑢 = (∆𝑢
2
, − ∆𝑢

1
),   𝑢 = (𝑢

1
, 𝑢

2
) ∈ 𝐷(𝐴).
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So, this is the thing then star implies that u dash t equals . So, du1 by dt d by dt that is u𝐴𝑢(𝑡) 𝑢
2

dash t minus delta plus delta and so, that is equal delta minus delta when you take it𝑢
2

𝑢
1

𝑢
2

𝑢
1

to the other side and therefore, that will give you precise the by dt t greater than 0 and u of𝑑2𝑢

0 equals equals , .𝑢
0

𝑢
1,0

𝑢
2,0

So, if you belongs to then you have a𝐷(𝐴)

(𝐴𝑢, 𝑢) =
Ω
∫(∆𝑢

2
)𝑢

1
 𝑑𝑥 −

Ω
∫(∆𝑢

1
)𝑢

2
 𝑑𝑥 = 0.
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Now, if you go back to the Galerkin method example. This implies if you go and look at that it

precisely says and same method will implies therefore, A and𝑅(𝐼 − 𝐴) = 𝑉 𝑅(𝐼 − 𝐴) = 𝑉

are both. So, you just go to the previous chapter where they gave you an example of the− 𝐴

Galerkin method I mentioned that will be useful in the solution Schrodinger equation and that is

exactly if you look at right range (())(09:22) that is exactly what we proved there exists a unique

solution to that we did not use a Laxman lemma we use the Galerkin method instead.



So, and are both maximal dissipative implies they together generate a group of isometries𝐴 − 𝐴

and this implies conclusions of the theorem. So, if you notice in the domain which it is which we

are given is in the domain. So, and or both in . So, is in the domain and𝑢
0

𝑢
1,0

𝑢
2,0

𝐻2 ∩ 𝐻1
0

𝑢
0

then you have and this is a condition which says that it is an isometry it preserves the norm of the

initial value throughout the thing. So, this represents this solution. So, therefore, you have a

unique solution for the Schrodinger equation by through its real and imaginary parts.
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So, the Schrodinger equation looks like the heat equation, but it solves use methods like the wave

equation here. And

Remark: If then you haveΩ = ℝ𝑁

𝑖 ∂𝑢
∂𝑡 − ∆𝑢 = 0   𝑖𝑛  ℝ𝑁 × (0, ∞),

𝑢(𝑥, 0) = 𝑢
0
(𝑥)  𝑓𝑜𝑟 𝑥 ∈ ℝ𝑁.

no boundary terms now. So, then you can write as using the Fourier transform you can then show

that



𝑢(𝑥, 𝑡) = (− 4π𝑖𝑡)
− 𝑁

2

ℝ𝑁
∫ 𝑒

−𝑖 |𝑥−𝑦|2

4𝑡 𝑢
0
(𝑦)  𝑑𝑦.

So, this is the solution of the Schrodinger equation in and again you will have that u ofℝ𝑁 𝐿2

norm will be preserved. So, this is about the Schrodinger equation and we will. So, that brings us

to the end of the examples which I wanted to talk about.


