Sobolev Spaces and Partial Differential Equations
Professor S Kesavan
Department of Mathematics
Institute of Mathematical Sciences
Lecture 83
The Schrodinger equation
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conservation of energy |g—¢ (. t)| + |u(, t)| 0= lg| oq T |f] Lo So, the correction is this
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it is an L and this is H 0 and this should u

Before, I begin let me fix ERRATUM. So, in the theorem on the wave equation. I wrote the
du

should be 1, () because you the space is for —
squared. So, today we will look at one more

azu
at’

correspond to f, g_u correspond to g and that is conserved.
. . .. . N
So, this is the thing and another place when writing the equation for R I wrote % you would
examples. So, this is the Schrodinger equation. So, this is an equation which is important

have figured it out it should be

in quantum mechanics.



So, you take Q R" bounded open set and I' = 9dQ we look for u: Q1 X [0, ) — C for the

first time we are going to deal with something it is complex valued well for few moments and

such that,

. 9 .
la_I:— Au =0 in Q X (0, 00),

u=0 on I' X (0,)
u(x,0) = uo(x) forx € Q.
So, you have an i here in front otherwise it looks very much like the heat equation. So, we are
want to deal with real functions. So, we write
u=u +iu, the real and imaginary parts. So, we separate the real and imaginary parts in this
equation.
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And then so, separating real and imaginary parts, we get the following system of equations

1

ot

ou
Au, =0, in Q X (0, 00),

du
2 _ .
prai Au1 =0, in Q %X (0,),

u =u, = 0, on T x (0, 00),



ul(x, 0) = uLO(x) for x € Q.
uz(x, 0) = uz,o(x) for x € Q.

So, this is the real and imaginary parts. So, we have a following this system of equations which

we want to solve, and now we have the following

Theorem Q c R" bounded open set of class C 2, U, and u,, in HZ(Q) NnH 10(9) then

there exists a unique solution of star such that.
2 2 2 2
So,f|u1(x, t)| dx +f|u2(x, )| dx = [ lu, | dx +f|u20| dx
Q Q Q a ”

So, this is for all t greater than 0. So, this is the theorem which we have. So,
Proof. So, we take V' = (LZ(Q))2 and A: D(A) € V - V to be defined by
2 1 2
D(A) = (H () nH (Q),

Au = (Auz,— Aul), u = (ul, uz) € D(4).
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So, this is the thing then star implies that u dash t equals Au(t). So, dul by dt du2 by dt thatisu

dash t minus delta u, plus delta u, and so, that is equal delta u, minus delta u, when you take it
to the other side and therefore, that will give you precise the du by dt t greater than 0 and u of
0 equals u 0 equalsu, ,u

1,0 72,0

So, if you belongs to D(A) then you have a

(Au,u) = f(Auz)u1 dx — f(Aul)u2 dx = 0.
Q Q
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Now, if you go back to the Galerkin method example. This implies if you go and look at that it
precisely says R(I — A) = V and same method will implies R(I — A) = V therefore, A and
— A are both. So, you just go to the previous chapter where they gave you an example of the
Galerkin method I mentioned that will be useful in the solution Schrodinger equation and that is
exactly if you look at right range (())(09:22) that is exactly what we proved there exists a unique

solution to that we did not use a Laxman lemma we use the Galerkin method instead.



So, A and — A are both maximal dissipative implies they together generate a group of isometries

and this implies conclusions of the theorem. So, if you notice in the domain which it is which we

. .. . .2 1 .. .
are given u is in the domain. So, u, _and u,, or bothinH N H o So, u, isin the domain and

1,0
then you have and this is a condition which says that it is an isometry it preserves the norm of the
initial value throughout the thing. So, this represents this solution. So, therefore, you have a

unique solution for the Schrodinger equation by through its real and imaginary parts.
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So, the Schrodinger equation looks like the heat equation, but it solves use methods like the wave

equation here. And

Remark: IfQ = R then you have

. 9 ) N
la—lt‘— Au=0 in R X (0,),

u(x,0) = uo(x) forx € R".

no boundary terms now. So, then you can write as using the Fourier transform you can then show

that



N et
u(x,t) = (— 4mit) > [e * u,(v) dy.
]RN

So, this is the solution of the Schrodinger equation in R" and again you will have that u of L
norm will be preserved. So, this is about the Schrodinger equation and we will. So, that brings us

to the end of the examples which I wanted to talk about.



